International Journal of Drug Development and Research

  • ISSN: 0975-9344
  • Journal h-index: 51
  • Journal CiteScore: 46.50
  • Journal Impact Factor: 26.99
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Genamics JournalSeek
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Scimago
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Publons
  • MIAR
  • University Grants Commission
  • Euro Pub
  • Google Scholar
  • J-Gate
  • Secret Search Engine Labs
  • ResearchGate
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page


Analytical method development of Quetiapine Fumerate in bulk and its Tablet Formulation by simple UV Spectrophotometry

R.Valarmathi, C. S. Dhivya Dhharshini, R. Senthamarai, S. Farisha Banu

Quetiapine fumerate (QTF) (bis [2-(2-[4-(dibenzo [b, f][1,4]thiazepin-11-yl]ethoxy) ethanol]fumarate) is the most recent agent introduced on the drug market for the treatment of psychotic disorders. Spectrophotometric analytical methods for the quality control of Quetiapine Fumarate in two different commercial marketed tablet dosage form (BRAND A & BRAND B) of same strength 25 mg have been developed. The absorbance data was obtained by the measurements at selected wavelength of 290 nm by using Methanol: water in the ratio 50:50v/v as solvent. Beers Lambert’s law obeyed at concentration range 15.99 - 24.09 μg/mL concentration range of Quetiapine for spectrophotometric methods at selected wavelength. Proposed method gave satisfactory results in terms of precision and repeatability for both the brands i.e. 100.41% and 99.77% respectively. Also accuracy values were very good for both brands i.e.100 % and 99.83 % resp. which is drawn out by recovery studies, were found satisfactory. The spectroscopic method have excellent linearity and range (r2 =/0.9997). The procedures do not require any separation step. These methods were successfully applied to any solid dosage form containing same drug and was found to be utter, swift, simple, fast, reliable, sensitive, specific and efficient for their estimation from pharmaceuticals