International Journal of Drug Development and Research

  • ISSN: 0975-9344
  • Journal h-index: 49
  • Journal CiteScore: 11.20
  • Journal Impact Factor: 8.24
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Genamics JournalSeek
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Scimago
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Publons
  • MIAR
  • University Grants Commission
  • Euro Pub
  • Google Scholar
  • J-Gate
  • Secret Search Engine Labs
  • ResearchGate
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page


Development and Optimization of Gastroretentive drug delivery system for Oseltamivir

Yong Tze Teen, Adinarayana Gorajana, P. S. Rajinikanth, Sreenivas Patro Sisinthy, Nalamolu Koteswara Rao

The objective of this research work was to formulate and optimize a floating drug delivery system of Oseltamivir using simple lattice design. Floating tablets were prepared by melt granulation method. In this design xanthan gum as matrix forming agent, sodium bicarbonate as gas generating agent and ethyl cellulose as floating enhancer were used as independent variables and floating lag time, t50 and t80 as responses. The optimization study reveals that optimum amounts of xanthan gum, sodium bicarbonate and ethylcellulose is required to develop a gastroretentive drug delivery system of oseltamivir with a desired release profile. Moreover, the studies indicate that the proper balance between floating enhancer and release rate retardant can produce formulations with desirable release and floating properties. Kinetics of the drug release from tablets followed Krosmeyer Peppas model by anomalous non-Fickian diffusion. It was concluded that the gastroretentive drug delivery system can be developed for Oseltamivir to increase the residence time of drug in the stomach and thereby increasing its absorption. The present study demonstrates the use of Simple lattice design in the development of floating tablets with minimum experimentation