Flyer

International Journal of Drug Development and Research

  • ISSN: 0975-9344
  • Journal h-index: 49
  • Journal CiteScore: 11.20
  • Journal Impact Factor: 8.24
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Genamics JournalSeek
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Scimago
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Publons
  • MIAR
  • University Grants Commission
  • Euro Pub
  • Google Scholar
  • J-Gate
  • SHERPA ROMEO
  • Secret Search Engine Labs
  • ResearchGate
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page

Abstract

Formulation and evaluation of fast dissolving sublingual films of Rizatriptan Benzoate

Bhyan Bhupinder, Jangra Sarita

Rizatriptan Benzoate, a serotonin 5-HT1 receptor agonist is a new generation antimigraine drug which has oral bioavailability of 47% due to hepatic first pass metabolism. The present study investigated the possibility of developing Rizatriptan benzoate fast dissolving sublingual films allowing fast, reproducible drug dissolution in the oral cavity, thus bypassing first pass metabolism to provide rapid onset of action of the drug. The fast dissolving films were prepared by solvent casting method. Low viscosity grade of hydroxylpropyl methylcellulose (HPMC E 15) and maltodextrin were used in combination as film forming polymer, due to their hydrophilic nature and palatable taste. To decrease the disintegration time of formulations sodium starch glycolate was used as disintegrating agent. Glycerol, mannitol, aspartame and sodium lauryl sulphate were used as a cooling agent, sweetening agent and oral penetration enhancer respectively. All the films formulations (F1-F8) was evaluated for their thickness, weight variations, tensile strength, percentage elongation, folding endurance, surface pH, in-vitro disintegration, drug content, in-vitro drug release and ex-vivo permeation. Disintegration time showed by the formulations was found to be in range of 25-50 sec. Formulations F1 and F2 showed 90% in-vitro drug release within 7 min and 61% ex-vivo drug permeation within16 min. The film showed an excellent stability at least for 4 weeks when stored at 400 C and 75% in humidity.