Flyer

Archives of Medicine

  • ISSN: 1989-5216
  • Journal h-index: 17
  • Journal CiteScore: 4.25
  • Journal Impact Factor: 3.58
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Genamics JournalSeek
  • China National Knowledge Infrastructure (CNKI)
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Proquest Summons
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
  • Secret Search Engine Labs
Share This Page

Abstract

Genes of Virulence and Phylogenetic Group in Isolates of Avian Pathogenic Escherichia coli

pez VHM, Serrano IQ, Delgado PDPM, Rodrguez LEV, Olague-March M, Rodr­guez SHS,Luna MAL, de la Torre AF, Santoyo RMR

Avian pathogenic Escherichia coli (APEC) shares some virulence attributes with strains of E. coli that cause extraintestinal infections in humans. The APEC is considered a possible cause for a zoonosis. The objective of this work was to determine the prevalence of twelve genes that are associated with virulence in a group of APEC isolates, as well as to identify the phylogenetic groups to which they belong. According to the results, one of these isolates harbors 91.6% of the virulence genes and most of the isolates have 7 or 8 of such twelve genes. The genes feoB and iss had the highest prevalence, with 95.6%. Genes associated to the acquisition of iron were present in more than 60% of the APEC isolates, while those of the ibeA invasin and vat toxin were detected with the lowest prevalence. A great genetic diversity was observed on the APEC isolates, which suggest that bacterial systems for iron acquisition, and those related to bacterial resistance to the host’s defense mechanisms are fundamental virulence factors in these bacteria. On the other hand, the rest of the virulence genes provide valuable information for the development of vaccines against avian colibacillosis. It was also determined that a high percentage of APEC belongs to the phylogenetic group B1, from which mainly commensal and pathogenic E. coli strains derive.