Flyer

International Journal of Drug Development and Research

  • ISSN: 0975-9344
  • Journal h-index: 49
  • Journal CiteScore: 11.20
  • Journal Impact Factor: 8.24
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Genamics JournalSeek
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Scimago
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Publons
  • MIAR
  • University Grants Commission
  • Euro Pub
  • Google Scholar
  • J-Gate
  • SHERPA ROMEO
  • Secret Search Engine Labs
  • ResearchGate
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page

Abstract

In Silico Docking studies of Aldose Reductase Inhibitory activity of selected Flavonoids

Muthuswamy Umamaheswari, C. S. Aji, Kuppusamy Asokkumar, Thirumalaisamy Sivashanmugam, Varadharajan Subhadradevi, Puliyath Jagannath, Arumugam Madeswaran

New drugs for the inhibition of the enzyme aldose reductase are in development and they have to be screened before being considered for preclinical and clinical evaluation. The current study deals with the evaluation of the cyclooxygenase inhibitory activity of flavonoids using in silico docking studies. In this perspective, flavonoids like Farobin-A, Gericudranin- B, Glaziovianin-A, Rutin, and Xanthotoxin were selected. Epalrestat, a known aldose reductase inhibitor was used as the standard. Docking results showed that all the selected flavonoids showed binding energy ranging between -7.91 kcal/mol to - 5.08 kcal/mol when compared with that of the standard (-5.59 kcal/mol). Intermolecular energy (- 9.11 kcal/mol to -8.66 kcal/mol) and inhibition constant (1.58 μM to 187.37 μM) of the ligands also coincide with the binding energy. Xanthotoxin contributed better aldose reductase inhibitory activity because of its structural parameters. Further studies are required to develop potent aldose reductase inhibitors for the treatment of diabetes.