Flyer

International Journal of Drug Development and Research

  • ISSN: 0975-9344
  • Journal h-index: 49
  • Journal CiteScore: 11.20
  • Journal Impact Factor: 8.24
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Genamics JournalSeek
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Scimago
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Publons
  • MIAR
  • University Grants Commission
  • Euro Pub
  • Google Scholar
  • J-Gate
  • SHERPA ROMEO
  • Secret Search Engine Labs
  • ResearchGate
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page

Abstract

Prevent Neurogenic Muscle Strength using Operational Ingredients

Sadhwy S*

Debilitating neurogenic muscular atrophy is characterized by a diminished interaction between motor neurons and skeletal fibers and can be brought on by disease or aging-related neurotrauma.In situations where neuroperformance is declining, two current therapeutic approaches for preserving muscle mass are physical activity and pharmacotherapy.They slow the disease's progression but do not provide a specific remedy.Nutritional support can help lessen neuromuscular atrophy and is an important component of personalized medicine's success.Here, we summarize the sub-nuclear pathways set off by skeletal muscle denervation that may be impacted by functional enhancements.This narrative review examines and discusses studies on the use of functional ingredients to combat neuromuscular atrophy, focusing on their therapeutic or preventative effects on skeletal muscle.After considering the experimental models of rodent denervation and amyotrophic lateral sclerosis, as well as information gleaned from human studies and the use of experimental animal models, we propose an experimental model of denervation caused by aging.I scrutinized the model.

Keywords

Nutraceuticals; Natural Compounds; Muscle Wasting; Neurodegenerative Diseases; Sarcopenia; Aging

Published Date: 2022-10-31; Received Date: 2022-09-26