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A Spiking Model of Cell Assemblies: Short 
Term and Associative Memory

Abstract
Cell Assemblies (CAs) are the neural basis of both long and short term memories. 
CAs, whose neurons persistently fire, are active short term memories while 
the neurons are firing, and the memory ceases to be active when the neurons 
stop firing. This paper provides simulations of excitatory spiking neurons with 
small world topologies that persist for several hundred milliseconds. Extending 
this model to include short term depression allows the CA to persist for several 
seconds, a reasonable psychological duration. These CAs are combined in a simple 
associative memory so that when three CAs are associated, ignition of two causes 
the third to ignite, while pairs of unassociated CAs do not lead to the ignition of 
other CAs. This mechanism has a larger capacity than a Hopfield net. A discussion 
of the current psychological theories, other mechanisms for short term memory, 
the strengths and weaknesses of the paper’s simulated models, and proposed 
challenges are also provided.
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Introduction
A long standing hypothesis is that Cell Assemblies (CAs) are 
the neural basis of many psychological phenomenons such as 
concepts [1]. So, the neural basis of the concept dog is a CA, a 
set of neurons with high mutual synaptic strength. When the 
concept is present in short term memory, the neurons are firing 
at an elevated rate; so the CA is the basis of both long and short 
term memory. While this long standing hypothesis has many 
adherents, and is frequently used in the simulation literature, 
little work exists using persistently firing CAs as the basis of short 
term memory [2-5].

While it is relatively easy to simulate CAs that persist indefinitely, 
it is more difficult to get them to persist for seconds, and 
then autonomously cease firing, like psychological short term 
memories [6,7]. Section 3 shows a series of simulations using 
small world topologies of spiking point neurons that persist once 
ignited, and then spontaneously cease firing. These simulations 
use point models that are widely used in neurobiological 
simulations. Section 4 shows an extension of the small world 
model using short term depression, which supports flexible firing 
duration, and thus flexible short term memory on the order of 

seconds.

One of the problems with indefinitely firing CAs is that they are 
typically not calculating anything, but simply keeping a short term 
memory active. For CAs to be effective, they need to calculate 
something. It is theorized that CAs perform many tasks beyond 
holding items in memory including spatial localization and 
mapping, acting as the semantic pole of symbols such as words, 
and associative memory [8-11]. As the neural basis of symbols, 
they act as active symbols [12]. Section 5 describes simulations of 
associative memory, with triples of associated CAs. These have an 
increased capacity over Hopfield nets, with two CAs retrieving the 
third associated CA. The paper concludes with a discussion that 
positions the model within the overall computational cognitive 
neuroscience context. The final section summarizes.

Literature Review 
The neural basis of short term memory is poorly understood. 
Indeed the basics of psychological short term and working 
memory are under debate. The standard model of short term 
memory is that a CA of neurons fires persistently to maintain the 
active short term memory.
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Short term memory
Short term memory is an important aspect of cognition, including 
human cognition [13]. Short term memory and working memory 
are often conflated but they can be viewed as a continuum with 
working memory centred on attention and a small number of 
items in working memory. Short term memory may be larger 
and less central to processing [14-16]. See section 6.1 for further 
discussion of short term and working memory and current 
neuropsychological theories. The standard theory, deriving from 
is that cognitive items in short term memory have their neurons 
firing at an elevated rate [1]. The neurons associated with a 
cognitive item are the neural basis of that CA.

Cell assemblies
A CA is learned using Hebbian learning. Indeed, Hebb proposed 
the CA and Hebbian learning in tandem [1]. Neurons fire 
repeatedly in response to stimulus, and as these neurons fire, 
their mutual synaptic strength increases. Eventually, this strength 
is sufficient to sustain a reverberating circuit, a CA, and the CA 
can continue to fire without external stimulus. When a stimulus 
is presented with sufficient strength, the reverberating circuit is 
said to ignite. The cognitive unit the CA represents is in short term 
memory while spiking at an elevated rate. In the standard model, 
when the reverberating circuit ceases to fire, the cognitive unit 
has left short term memory.

There are long standing computational models of CAs [17,18]. 
Here the system represents a set of neurons that have particular 
parameters. When sufficient activity is sent into the system, the 
CA ignites, then follows a Snoopy curve of activation. That is the 
system initially has a burst of activity, then the activity gradually 
decreases, until it can no longer support the reverberating 
activity and then the activity, collapses to below the baseline 
activity. (It is called a Snoopy curve because a plot of neurons 
firing by time looks something like Snoopy lying on his dog 
house.) Unfortunately, these models have not been simulated in 
spiking neurons.

Binary cell assemblies
It is relatively easy to construct a topology of point neurons that, 
once ignited, persists indefinitely [6]. With Leaky Integrate and 
Fire (LIF) neurons, a small number of well-connected neurons is 
sufficient. If they all spike, they will activate each other causing 
them all to spike repeatedly. If the neurons have adaptation, two 
or more sets of neurons can activate each other like a synfire 
chain [19]. These are binary because they are either on or off. 
These are similar to spin glass models, and other well connected 
topologies. For example, the Hopfield net, once started, moves to 
a stable state that persists indefinitely [20]. While it is relatively 
easy to construct complex procedural logic with binary CAs, 
their behaviour as short term memory items is poor. Short term 
memory does not persist indefinitely.

Point models of neurons
Point models are approximations of neurons based on 
relatively simple equations. More complex models exist but are 

computationally expensive to simulate [21]. These models vary 
in their fidelity, and typical parameter settings do not reflect the 
wide variety of biological neural behaviour, and indeed many 
models cannot approximate many types of bio- logical neurons 
such as bursty neurons. Moreover, models are often extended 
by synaptic models. There are many common point models 
including reverberate and fire models leaky integrate and fire 
models, and leaky integrate and fire models with adaptation for 
a review or for an analysis of several point models) [22-25]. The 
standard interpretation is that neurons have activation, and they 
collect the activation from other neurons, via synapses, when 
those neurons fire. That activation leaks away over time. The 
model used in the simulations below is a leaky integrates and fire 
models with adaptation [23]. It is implemented in PyNN and NEST 
[26,27]. The model is based on equations 1-3. 
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V is the variable that represents the voltage of the neuron, and t 
the variable for the time. C is the membrane capacitance constant, 
and I is the input current. w is an adaptation variable initially 0 and 
determined by equation 3; most neurons have adaptation making 
the firing rate decline under constant input [28]. gL is the leak 
conductance constant and EL is the resting potential constant. ∆T 
is the slope factor constant and VT is the spike threshold constant. 
τw is the adaptation time constant. Equations 1 and 2 determine 
the change in V (the voltage variable), and equation 3 manages 
the change in w (the adaptation variable). These variables are 
also changed when V>VT and the neuron spikes, V is reset to EL, 
and w is increased by a constant b for spike triggered adaptation. 
The simulations described below in this paper use the default 
constants described by Brette and Gerstner [23]. The synapses 
transmit current over time at an exponentially decaying rate 
described by equation 4 [29].

( ) ( )Et
EI t g ττ −=  

g is the strength of the synapse, and τE is the speed constant. 
Again, the default constant (from PyNN) is used in the simulations 
below.

There are a wide range of biological neuron types, but regularly 
spiking pyramidal neurons are common in the cortex [30]. This 
spike without input, which is called spontaneous firing [31]. 
These are the type of neurons that are being modelled in this 
paper. While it is possible to change the parameters of the 
leaky integrate and fire model with adaptation to cause it to 
fire spontaneously, this leads to spontaneous CA reignition after 
initial ignition; a set of spike sources has instead been used (as 
is commonly done) [32]. Consequently, when unstimulated, the 
neurons fire spontaneously. This can be seen in Figure 1, which 
shows a set of 1000 neurons over 4000 ms. There is no external 
input except for each neuron is forced to fire 5 times at 1000 
ms. The plot shows initial spontaneous firing, followed by the 
external activation based firing at 1000 ms., a period of no firing 
due to adaptation, and then a return to spontaneous firing.
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Small world topology
Small world topologies are widely used to make simulated neural 
topologies and are characterised by a rich get richer topology. For 
example, Bohland and Minai use a small world topology to analyse 
retrieval of autoassociative memories, which is quite similar to 
CA ignition though the units are binary nodes following [20,33]. 
Hopfield, Zemanov´a, Zhou use a network of network of networks 
to explore synchronous behaviour. Both individual networks and 
connections between nets are small world. Individual nets map 
to brain areas, and connections map, both functionally and by 
biological connectome data [34].

Psuedocode for small world topology creation 
Allocate n-n synapses

Existing-synapse-count=n*number-neurons for each neuron for 
each new synapse 

Pre-synaptic-neuron=neuron

Target-number=random (0, existing-synapse-count)

Target-neuron=neuron-of-synapse-number (target-number)

Post-synaptic-neuron=target-neuron

Creates synapse (pre-synaptic-neuron, post-synaptic-neuron)

Existing-synapse-count +=1

Simulations below use a small world topology. Neurons all have 
the same number of synapses leaving each neuron to other 
neurons in the CA. However, incoming synapses are allocated by 
the small world topology. This is done following the algorithm 

described in equation 1. Initial synapses are allocated so that 
each neuron has the same number of incoming and outgoing 
synapses (allocate n-n synapses). Typically, each has one leaving 
and one entering (n=1). Then new synaptic targets are allocated 
by a rich get richer scheme. The first post-synaptic target neuron 
is selected randomly, but the second is twice as likely to be 
allocated to that same target as to any other neuron. Repeating 
this leads to a zipf distribution of incoming synapses with many 
neurons having few incoming synapses, and some having many 
[35]. Concern about the length of synaptic paths in nets formed 
as random graphs is related to small world topologies. Small 
world topologies have short path lengths as an intrinsic property 
[36]. There is evidence that biological topologies are small world 
[37]. This lends some additional biological support for this model.

Persistence and energy
The energy of a neural system, particularly a simulated one, can 
be measured by its voltage, its spikes or a combination of these. 
When a neuron fires, its voltage is typically reset, but voltage is 
then spread to its post-synaptic neurons. A CA has a relatively 
low background energy, which increases rapidly when it ignites. 
The energy then drops when the circuit stops reverberating. 
Figure 2 shows the behaviour of a small world topology with a 
moderate level of input (see supplementary section for details). 
Figures 2-4A show the number of neurons, of the 1000 in the 
CA, firing per 1 ms. time step. The same coarse topology is used 
for all three runs, but the synaptic weight is varied. Spontaneous 
firing can be seen by all three before initial external activation is 
provided at 150 ms. The lower synaptic weight CA fails to ignite 
with 50 neurons fired, and spontaneous firing continues; the 

Figure 1:  This raster gram shows neurons firing spontaneously throughout 4000 ms. These neurons fire on average once per second. At 1000 
ms. the neurons are forced to fire. This leads to a period of no firing followed by a return to spontantaneous firing.



2023
Journal of  Neurology & Neuroscience

Vol. 14 No. S7: 003ISSN: 2171-6625

This article is available from: https://www.imedpub.com/journal-of-neurology-and-neuroscience-advertising-111.html4

initial spikes do not produce enough energy to cause ignition. 
The middle weighted CA ignites, and persists for approximately 
600 ms and then spontaneous firing returns. The initial spikes 
cause an increase in energy sufficient for ignition. Adaptation 
then allows the threshold to maintain reverberation to increase, 
and the CA stops reverberating. The largest weighted CA fires 
indefinitely; the plot shows firing for 4000 ms but runs to 100,000 
ms (and perhaps indefinitely beyond) with the CA persistently 
firing throughout; in this case, adaptation is insufficient to stop 
reverberation. It is relatively easy to construct a network that 
fires indefinitely, but more difficult to make one that stops after 
seconds of firing.

Figure 2 shows a group of neurons that does not ignite (0.004), 
a self-terminating short term memory (0.006), and a short term 
memory that persists indefinitely (0.007) unless shut off by some 
other process. As short term memory is supported by persistent 
firing, the underlying long term memory is formed by the 
topology, which is the synaptic connectivity and the weight. The 
author found no topologies with random synaptic connectivity 
that had self-terminating persistence.

The small world topology lowers the energy that is needed to 
ignite the CA. Since the distribution of incoming synapses is 
skewed so that some neurons have many more, it takes fewer 
initial neurons, on average to make those neurons fire. As those 
neurons fire, they increase the overall energy of the CA, and it 
ignites. Similarly, when those neurons have increased adaptation 
leading to lower firing rates, they can cause a loss of activity that 
stops the CA’s reverberation. That is, with less synaptic strength, 
there is insufficient energy to ignite the CA. With moderate 
synaptic strength, enough energy is generated for the CA to 
ignite; moreover, as adaptation increases, the energy is no longer 
sufficient to support reverberation, and the neurons in the CA stop 
firing. With even more synaptic strength, the CA ignites, but energy 

generated overcomes adaptation and the CA persists indefinitely.

Extending persistence via short term depression
While persistence for several hundred ms. is useful, the standard 
theory states that while the short term memory is active, the 
neurons in the CA are firing at an elevated rate. As it is clear that 
short term memories can persist for at least several seconds, a 
spiking CA model that persists for several seconds is needed.The 
model from section 3 is made up entirely of excitatory neurons 
with adaptation and synapses whose weights do not change 
(static synapses). See section 6.2 for neural systems without 
inhibition. This section uses a modified synaptic model that has 
Short Term Depression (STD) [38,39] Figure 2. The short term 
depression is linear. When the neuron spikes, its post-synaptic 
synapses decrease in weight down toward 0, and when it does 
not spike, the weight increases back toward its original weight 
(equation 5)
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wt is the weight of the synapse at time t and w0 is the initial 
weight. wt-1 is the weight from the prior step. Dr and Dc are the 
synaptic weight change (reduction and increase) constants.

A simple extension of the system from Figure 2 yields a CA that 
persists for roughly 4000 ms, a psychologically realistic time. 
This is shown in Figure 3 the modification is that each synapse 
is split into a static and an STD component. The initial overall 
weight is similar to the 0.007 weight, but over the 4000 ms. the 
weight of many of the synapses decreases leading the CA to 

Figure 2: The spiking behaviour of three Small World Topology (SWT) networks of 1000 neurons with a series of 50 inputs. The networks have 
the same course topology but vary on the synaptic weights. The smallest weight, 0.004, shows no ignition, though the spontaneous 
activation for it can be seen. The next weight, 0.006, ignites and fires persistently for about 600 ms. It then stops followed by a 
period with no spontaneous firing, and then a period of spontaneous firing. The final weight, 0.007, persists indefinitely. Note: 
 ( ) 0.004; ( ) 0.006; ( ) 0.007.
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cease reverberating, (See the supplementary material section for 
further details) ( ).

CAs and associative memory
The CAs currently being simulated in the community are at best 
a metaphor of biological CAs. An extra constraint is that the CAs 
actually do some sort of calculation. As one of the main human 
cognitive components is associative memory, these simulations 
use a simple form of association. This is a three way association 
between primitive CAs. If two are presented, the third is 
retrieved. This type of association can account for psychological 
data [40]. An associative memory using five CAs is created. For 
the purposes of this paper, the CAs are labelled A0, B0, B1, 
C0, and C1, and there are two sets of three-tuple associations 
A0 − B0 − C0 and A0 −B1 −C1. The idea is that each of the CAs 
can be ignited and persist independently, as can the three way 
associations. Moreover igniting any pair of an association will lead 
to the full three-tuple igniting; a pair will retrieve its associated 
third. Finally, it is also important that unassociated pairs do 
not ignite any spurious CAs. So, for instance, igniting B0 and C1 
enables them to fire persistently, but no third CA will ignite. If 

one is engineering a neural system to do this task, it is relatively 
straight forward. A simple translation from linear algebra would 
work similarly, a precise temporally decaying topology combined 
with a neural finite state automata would also work. However, 
it is entirely unclear how these topologies could be learned in a 
biological brain [41-44].

Figure 4A shows the number of neurons spiking per ms. in each 
individual base CA. Neurons in B0 are presented at 150 ms. 
leading to its ignition, and neurons in C0 are presented at 170 
ms. leading to its ignition. As the two are associated they have 
elevated firing. The synaptic connectivity from both to A0, and 
the elevated firing rates of their neurons, is sufficient to ignite A0. 
B0 and C0 retrieve A0 in                          .
In Figure 4B, C0 is presented at 150 ms. and persists. This is an 
example of a single CA igniting and persisting.

In Figure 4C, B0 is present at 150 and C1 is presented at 170 ms. 
leading to their ignition. However, as the two are not associated, 
they do not fire at a faster rate. So, the two are insufficient to 
ignite A0 despite both C0 and C1 having the same synaptic weight 

Figure 3: A CA of 1000 neurons with synapses with Short Term Depression (STD). After initial ignition, at 150 ms, neurons in the net fire 
persistently, with synaptic weight decreasing over time via STD. Eventually, the synaptic weight is insufficient to maintain 
reverberation, and the CA is extinguished.

Figure 3 

Figures 4A-4D

to A0.
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associative networks of Hopfield networks [20]. Hopfield nets of 

N nodes can only have N stable states. This simulation describes 
a network of five CAs, with seven stable states (the five individual 
CA states e.g. B1; the two associated states A0 −B0 −C0 and A0 
−B1 −C1. If the four unassociated states B0 B1, B0 C1, B1 C0, and 
C0 C1 are considered, there are eleven states.). This of course is 
still on the order of N stable states. It does not require all CAs 
to be connected. For instance, B0 and C1 are not connected. 
However, all of the CAs in a triple need to be connected, and the 
triples can only share one CA. So, adding two new CAs, B2 and C2, 
enables a new triple A0 B2 C2 or B0 B2 C2 but not both. Adding 
two new CAs would also add new unassociated stable states; for 
A0 B2 C2, B0 B2 and others would be added. Negatively, the use 
of 1000 neurons per CA, which are each more computationally 
complex than a Hopfield unit, does not lead to a capacity win at 
least until there are a large number of CAs, and then it will be in 
unassociated CAs.
These states are also not stable, but pseudo-stable. They do stop, 
which allows new calculations. It is important that the CA network 
is actually doing a calculation during its processing and indeed 

In Figure 4D, B0 is presented at 150 ms. and C1 is presented at 170 
ms. leading to their ignition. Like Figure 4A, this also retrieves A0.
The CAs is each instances of the STD CAs from section 4. They 
are associated by randomly selected neurons from each pair 
with a small weight. Each neuron in CA has several low weighted 
synapses to the associated CA. The post-synaptic target neurons 
are randomly selected from the neurons in the target CA. A0 gets 
as much synaptic weight from the pair B0-C0 as from B0-C1. The 
reason that A0 is ignited by B0-C0 but not B0-C1 is that B0 and C0 
fire at an elevated rate because they are associated. The synaptic 
strength that supports the association provides sufficient energy 
to A0 to ignite it, while the rate of the unassociated CAs is 
insufficient.
Note that synchrony plays a part in retrieval. When two associated 
CAs fire, they move into synchrony, as they stimulate each other. 
So, the incoming strength to the retrieved CA is greater. In the 
unassociated CAs, they continue to fire out of phase. This means 
that associative networks of CAs have a larger capacity than 

Figure 4: Base CAs is sent spikes at 150 ms. and if there are two the second receive spikes at 170 ms. In all four examples, all immediately 
ignite. (A) Associative synaptic strength leads A0 to ignite at 200 ms; (B) C1 alone is ignited, and no other CA ignites; (C) B0 and 
C1 fail to ignite A0 despite C0 and C1 having the same synaptic strength to A0; (D) Behaves like 4A on the other association. Note:  
( ) A0; ( ) B0; ( ) B1; ( ) C0; ( ) C1.
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inhibitory input and makes use of fast synaptic current transfer. 
A formal mechanism for the calculation of a synaptic weight 
matrix that supports the changing value of dynamic variables, 
represented by the neural outputs, can create neural systems 
that have sophisticated behaviour, such as robot arm controllers. 
It is however unclear whether these systems actually represent 
biological neural.

A more promising modification to the standard model is the 
addition of Short Term Potentiation (STP). Here a CA ignites, but 
then terminates. However, STP makes it easier to reactivate the 
CA for some time. When an area of the brain is broadly activated, 
the recently activated CA, now supported by STP, is the CA that 
ignites (or in this case re-ignites). Evidence of such behaviour is 
shown in working memory tasks [13]. There is a proposed neural 
architecture for working memory involving STP and neurons that 
do not persistently fire [51].

Perhaps there is a continuum from short term (and working) 
memory items based on STP to those based on persistent firing. 
Of course, those based on STP still need the neurons to fire 
persistently to start the process.

Simulating and emulating biological networks
It is difficult to simulate or emulate a large number of neurons 
in real time as a system that is parallel to an animal. No system 
currently parallels a mammal, though there are more complete 
models of simple brains such as the nematode C. elegans [52]. 
Work with high performance computers still falls short of 
simulating billions of spiking neurons in real time. Some work 
has been done in simulating small sections of the cortex but in 
this case, only 217,000 neurons and not in real time. However 
the biological fidelity of these simulations shows the distance 
from biological reality of almost all current neural simulation 
work (including the simulations in this paper). Markram use 
55 types of neurons, reflecting presence in particular cortical 
layers, biological synaptic connectivity, with short term plasticity, 
compartmental models, and other features [53].

Neuromorphic hardware can support larger networks of point 
neurons with, for example, SpiNNaker simulating roughly a billion 
spiking neurons in real time [54]. Perhaps more importantly, 
it is not entirely clear what to do with these neurons. Mere 
computational power is not the chief difficulty; it is understanding 
how large nets perform to elicit cognition. A rat has about 
a billion neurons, but how to go from spiking neurons to rat 
functionality is an open question [55]. Brains have developed in 
bodies and are driven by them and drive them. It is not entirely 
clear how to connect the body and the simulated or emulated 
brain, though there is work in spiking robots, and virtual agents 
[6,51]. Moreover, networks of simulated spiking neurons can be. 
Extremely powerful for example, balanced excitatory inhibitory 
networks can approximate complex robot control with less than 
1000 spiking neurons and [49]. These balanced nets have several 
biologically implausible features, so are poor biological models, 
but may be important to the community’s understanding of larger 
brain nets. So, a model using spiking neurons does not mean the 
model is biologically accurate. The models of CAs above in this 

a cognitive process [8]. Given two associated items, activate 
a third associated item. An example of what can be associated 
comes from [40]. If the CAs represent concepts like, B0 is has C0 
is feathers, B1 is is, C1 canary, and A0 is bird. Presenting has and 
feathers retrieve bird. Presenting canary and is also retrieves bird.

Discussion
It is hoped that simulation of neurons and neural systems will lead 
to better neurocognitive models and eventually an understanding 
of how the brain works to produce intelligent behaviour. However, 
the state of the art is quite some distance from anything like a 
complete understanding of how the brain produces intelligent 
behaviour; there is not agreement on the fundamental neural 
mechanisms that support psychological short term memory; and 
work in simulation is muddled by extensive use of biologically 
implausible models, and the difficulty of simulating a brain.

Working memory and short term memory
The evidence for the neural basis for working and short term 
memory is growing but is far from complete. It is clear that short 
term memories need to be represented neurally by a mechanism 
that largely reverts to the original state of the overall system 
after the memory has stopped [45]. It is likely that there is not 
just one type of short term memory mechanism, but several. 
Working memory tasks, such as memorising digits, are quite 
different from tasks such as scene scanning and reading. Perhaps 
there is some difference between the fast and slow systems of 
the brain; working memory is involved in the slow system and 
its capacity is quite limited, where the slow system may use a 
different mechanism, which has a larger capacity. It is likely that, 
at least initially, a CA needs to ignite to be accessible as a short 
term memory  in   Figure 4A [46].

In the standard model, the long term memory is represented by a 
CA; when it is ignited, neurons in the CA fire at an elevated rate, 
and the CA’s cognitive unit goes into short term memory. After 
the memory has ceased, and transient effects, such as short term 
depression and potentiation and adaptation, have disappeared, 
the system reverts largely to its initial state. The system may have 
had some modification of the long term state by, for instance, 
long term depression and potentiation, but this aside, the 
short term memory leaves no residual effects. Several CAs can 
be dynamically composed to provide cognitive behaviour, and 
this can significantly reduce the dimensionality of the system, 
which in turn can simplify the analysis of brain and cognitive 
states [47]. While the standard model has substantial biological 
support, other mechanisms have been proposed more recently 
[48]. These include short term synaptic facilitation and excitatory 
inhibitory balance [11,49,50].

Work on simulated spiking nets with an excitatory inhibitory 
balance supports the development of powerful engineering 
applications of spiking nets [49]. The work is inspired by evidence 
that neurons in vivo have irregular Poison-like spiking statistics. 
When neurons are near their firing threshold, a small input can 
cause them to fire. In simulation, systems keep neurons near 
their firing threshold by a topology that balances excitatory and 
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in Figures 2-4A.

Strength is that models are available for engineering neural 
systems. The standalone CAs can easily be integrated as 
components of larger systems, and in particular as a form 
of associative memory that persists for small finite times. 
Unfortunately the system also has weaknesses, and the author 
feels that pointing out these weaknesses can lead to the future 
development of better CA models. Firstly, neurons in the CAs are 
in one base CA. Biologically many, and perhaps all CAs, share 
neurons with other CAs [64]. It might be argued that the neurons 
are in only one base CA, but they are in many higher CA three 
tuples. Secondly, the neurons in the simulations fire at a very 
high firing rate. This is probably due to a lack of inhibition and 
the necessity of building up adaptive components (adaptation in 
section 3 and temporarily reduced synaptic strength in section 4) 
that lead the CA to stop firing. Thirdly, though understanding of 
memory activation and reactivation is far from complete, there is 
support for the idea that a memory that is activated with more 
strength remains in STM for longer. Moreover if a memory is 
reactivated, it will persist longer than from the initial activation 
The models presented above do not behave in this fashion 
[7,65,66]. Finally, note that in the above simulations, the CAs 
terminates on their own, and no CA is left ignited. It is entirely 
plausible that biologically CAs compete so do not need to self-
terminate; instead the overall system forces the ignited CA to 
terminate.

Conclusion
The overall task of simulating cognitive brain activity at a neural 
level is currently far from accurate. This paper has provided 
an example with simple neural models and topologies of self-
terminating short term memory cell assemblies. These models 
have used small world topologies and short term depression; 
the energy of the systems described their behaviour. These have 
also been used to implement an associative memory that is able 
to retrieve a third CA when two associated CAs are presented; 
all three leave short term memory shortly after retrieval. The 
overall system has a slight improvement on capacity over a 
Hopfield network, again described by the CAs’ energy. This 
associative memory task makes the system more than a simple 
short term neural memory model. The long term goal of this 
work in simulation is to develop artificial spiking neural network 
models that accurately represent animal neural behaviour and 
animal psychological behaviour. The authors are unaware of 
other spiking network models, even simple ones, that accurately 
represent the self-terminating persistently firing CAs spiking nets. 
As such, this paper provides a base line system, a straw man that 
can be used to explore neural psychological models of short term 
and associative memory.
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