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Abstract
Pancreatic Cancer is one of the leading causes of oncological-related death 
around the globe. It is difficult to resect surgically and resistant to many forms of 
traditional chemotherapy due to the presence of cancer stem cells. The prognosis 
is worsened due to the insidious onset of symptoms, leading to delayed detection 
and diagnosis, and hindering the effectiveness of treatment due to the advanced 
stage of metastatic disease. This review seeks to contribute to the development of 
novel diagnostic techniques and management of Pancreatic Cancer by elucidating 
recent advances in peptide research and proteomic biotechnology. Peptides and 
proteomics can help detect tumor presence earlier with more accuracy, enhance 
the delivery of pharmacological agents and perform various immunomodulatory 
and antineoplastic roles. When combined with traditional cancer therapy, peptides 
and proteomics have the potential to give future clinicians more useful tools to 
help their patients. 
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Introduction 
Pancreatic Cancer, or Pancreatic Ductal Adenocarcinoma (PDAC), 
is one of the deadliest neoplasms in the United States and across 
the globe. Even with rapid advancements in modern medicine, 
less than 5% of pancreatic cancer patients survive past five years 
from their diagnoses date [1]. The high mortality rate of pancreatic 
cancer can be attributed to three main factors: difficult surgical 
access and resection, extraordinary chemo-resistance, and the 
common presence of multiple comorbidities within patients. 

Pancreatic cancer arises due to a build-up of mutations in 
the ductal epithelium, with patients demonstrating aberrant 
expression in one or multiple pathways, including but not limited 
to KRAS, CDKN2A (Cyclin-dependent Kinase Inhibitor 2A), TP53 
(Tumor Antigen P53) and DPC4 (Deleted in Pancreatic Cancer 
locus 4) [2]. One or several of the following genetic alterations is 
commonly seen in dysplastic PDAC cells in purple. These include 
the upregulation of the KRAS protooncogene, downregulation of 
the CDKN2A tumor suppressor gene, as well as knockouts of the 
regulators TP53 and DPC4 [2].

See Figure 1 for an overview of common genetic alterations 
and mutations seen during the dysplastic change of pancreatic 
ductal cells. The tumor itself is characteristic in demonstrating 
a desmoplastic reaction, where pancreatic stellate cells induce 
invasive dense fibrous tissue growth as well as angiogenesis [3]. 

Critically, certain pancreatic cancer cells have demonstrated 
stem-cell qualities, which explains the high recurrence rate of 
the neoplasm even after extensive surgery, chemotherapy and 
radiation [4]. Even if a small population of these cancer stem-cells 
remain viable after treatment, the tumor could rapidly proliferate 
via asymmetric division [5]. Considering the aggressive and 
chemo-resistant nature of this neoplasm, the best “treatment” is 
often early detection and diagnosis. 

Traditionally, for earlier-staged patients, the treatment of 
pancreatic cancer has involved the Whipple Procedure or a radical 
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pancreatoduodenectomy with extensive lymph node resection in 
conjunction with chemotherapy [6]. The pharmacological agents 
that have shown the best efficacy towards pancreatic cancer 
are the cytotoxic pyrimidine analog, Gemcitabine, and the small 
molecule epidermal growth factor (EGFR) inhibitor, Erlotinib 
[7]. The combination of these agents yielded small survival 
improvements but also resulted in significant increase in toxicity, 
especially in gastrointestinal-related distress [8]. 

In this review, we seek to explore a new direction in the diagnosis 
and management of Pancreatic cancer. The recent advancements 
in proteomics research has propelled development of novel 
methods in improving diagnostic sensitivity and accuracy [9]. 
Various peptides are conjugated to traditional chemotherapeutic 
agents to enhance their delivery and efficacy. Peptide-based 
cancer treatment vaccines are being evaluated for their 
immunomodulatory effects [10]. Furthermore, antimicrobial [11], 
anti-angiogenic [12] and anti-metalloproteinase [13] peptides 
are being explored for their antineoplastic properties. With these 
new tools in hand and combined with traditional treatment, 
clinicians may find more effective ways to combat pancreatic 
cancer. This review aims to illuminate this path forward. 

Peptide-enhanced imaging and progression 
monitoring
Current diagnostic tools for PDAC include imaging modalities such 
as CT, MRI or endoscopic ultrasound. Contemporary evidence 
points to endoscopic ultrasound as having superior diagnostic 
accuracy [14]. Unfortunately, over 80% of patients with PDAC 
will have progressed to locally advanced cancer or distant 
metastasis before detection, leading to poor prognosis [15]. 
PDAC is often considered a “silent killer” because the neoplasm 
can often diffusely spread in the retroperitoneal space without 
producing obvious symptoms [16]. Thus, new and improved 
diagnostic tools can be revolutionary in bettering the prognosis 
of PDAC. Radiolabeled peptides and conjugated Quantum Dots 
are examples of novel modalities being investigated for their use 
in diagnosis and continual monitoring of PDAC. 

PDAC cells often contain unique types of surface peptides 
that differentiate them from normal neighboring cells. Thus, 
radiolabeled peptides can be a useful tool in enhancing the 
visualization of PDAC on imaging [17]. Mucins are a class of heavily 

glycosylated glycoproteins with a thick peptide core that anchors 
them to pancreatic epithelium. Mucins are heavily involved in 
the chemotherapeutic resistance of PDAC, which is a topic that 
will be discussed in depth in a later section [18-20]. Well known 
mucins include CA 19-9, MUC2, MUC5AC, MUC5B, MUC6, MUC7, 
MUC8, MUC9 and MUC19, MUC1, MUC3A/B, MUC4, MUC11, 
MUC12, MUC13, MUC15, MUC16, MUC17, MUC20, MUC21 and 
MUC22. All mucins above have been found to be elevated in 
patients with PDAC. Specifically, MUC1 is a key focus of several 
studies [21]. For example, in one study, PAM4-reactive MUC1 was 
a unique biomarker present in 87% of PDAC patients that helped 
surgeons track tumor activity post-pancreatectomy [16,22]. 
However, while these biomarkers are useful in tracking PDAC 
progression, their usefulness in early detection of the disease is 
yet to be explored. Additionally, CA 19-9 can be falsely elevated 
due to other issues, such as biliary tract infection [23]. Bombesin 
is another small peptide being studied for its use in diagnostic 
imaging. Radiopharmaceuticals that bind to Bombesin receptors 
have shown promise in non-invasive diagnosis and radiotherapy 
of GRP receptor positive pancreatic tumors [24].

Quantum dots (QDs) are nanoparticles that target cell-surface 
integrins. Researchers have conjugated QDs to arginine-glycine-
aspartic (RGD) acid, which bind with high affinity to specific 
integrins on cancer cells [25]. PDAC cells frequently express 
integrin receptors αvβ6 and ανβ3 at high levels [26-29], thus 
making them not only good targets for diagnostic development 
but also precision for chemotherapy. 

Peptide conjugates for precision therapy 
Standard PDAC treatment protocol: Traditional treatment 
of PDAC is dependent upon the stage. For earlier-staged and 
resectable tumors, which make up less than 20% of diagnosed 
cases, the standard treatment is surgery and adjuvant 
chemotherapy (fluorouracil and folinic acid, gemcitabine, or the 
mFOLFIRINOX regimen) [30,31]. The 5-year survival for cases 
treated with surgery and adjuvant chemotherapy is 20-30% 
[31,32]. Unfortunately, more than half of cases are diagnosed at 
advanced stages, for which only palliative care is indicated [33]. 
The 5-year survival for these advanced staged cases is 6-13% 
[32]. Thus, alternative therapeutic approaches are indicated 
to improve the prognosis of both surgically-resectable and 
advanced cases of PDAC.

Peptide therapy is one such novel approach, which involves 
conjugating drugs to cell-penetrating and/or nuclear localization 
signal peptides [34]. This method capitalizes on the increased 
density of peptide receptors on malignant cells to deliver therapy 
preferentially to targeted organelles. Peptide applications have 
been investigated in numerous animal and human cell models 
and show promising results for use in both tumor imaging and 
diagnostics, as well as in therapy [17]. 

General mechanism of peptide-drug conjugates: While many 
different PDAC cell receptors have been targeted by peptide-
drug conjugates, the integrin receptor (αvβ6 and ανβ3) has 
been widely successful in animal model experiments [26-29]. 
These integrin receptors are absent in normal cells but are highly 
expressed in PDAC cells due to their role in regulating tumor 

Figure 1 Common genetic alterations and mutations seen in 
dysplastic change of pancreatic duct cells. 
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growth, angiogenesis, and metastasis [7,9]. Reader et al. found 
that over 80% of 491 PDAC specimens studied expressed the 
αvβ6 integrin receptor. These cancers also retained expression 
of αvβ6 during metastasis, further substantiating this receptor’s 
potential for therapeutic targeting [35].

Additionally, the peptide sequence arginine-glycine-aspartic 
acid (RGD) has been effective in delivering drugs and therapies 
via targeting the αvβ6 receptor [27,28]. The drugs and therapies 
that have been tagged to integrin receptor peptides include 
targets for photodynamic therapy [26-28] and ProAgio [29]. 
Turaga et al. utilized the conjugated ProAgio to target integrin 
ανβ3 and induce apoptosis of pancreatic stellate cells. The 
complex was also capable of opening collapsed tumor vessels, 
enabling Gemcitabine delivery into the tumor [29]. In a mouse-
model, this regimen demonstrated enhanced survival rate over 
the use of ProAgio or Gemcitabine alone [29]. Studies have also 
demonstrated effective and preferential binding of the peptide 
to the integrin receptor regardless of the type of drug conjugate. 

Receptor-mediated endocytosis is the mechanism behind 
the internalization of the drug-peptide conjugate. The 
integrin receptor predominantly activates clathrin-dependent 
endocytosis, where the binding of RGD to the integrin receptor 
stimulates the creation of a clathrin-coated pit [36], which is then 
hydrolyzed from the cell membrane via the dynamin GTPase [37]. 
Upon internalization, the therapy is then successfully delivered to 
various cytoplasmic organelles. Certain drugs may require nuclear 
localization sequences, which help with traversing the nuclear 
envelope. ProAgio, a peptide vehicle conjugated to Gemcitabine 
(or another chemotherapeutic), targets the conjugated ανβ3 
integrin receptor to activate clathrin-dependent endocytosis [9]. 
Next, the binding of RGD to the integrin receptor stimulates the 
creation of a clathrin-coated pit [36], which is hydrolyzed from 
the cell membrane via the dynamin GTPase [37]. The vesicle then 
trafficks the therapy to an appropriate cytoplasmic organelle or 
in the case of Gemcitabine, to the nucleus, where it exerts its 
chemotherapeutic effects inhibiting DNA synthesis. See Figure 2 
for a demonstration of this mechanism. 

Despite the successful therapeutic use of the integrin receptor in 
animal studies, integrin receptor peptide-drug conjugate therapy 
has only been investigated in a few phase II clinical trials for PDAC 
patients, with limited scope. One such study analyzed Volociximab 
(an anti-α5β1 antibody) with gemcitabine in 16 PDAC patients 
and showed a partial response in one patient and only half of 
patients showed short-term stable disease (SD) with a median 
survival of only 9.6 months [38]. Due to its small sample size and 
short SD, this study needs further substantiation to draw a useful 
conclusion of therapeutic efficacy in PDAC patients [38]. However, 
phase II clinical trials with inhibitors targeting ανβ3 to treat highly 
angiogenic glioblastomas have shown some therapeutic benefits 
[39] and promise in patients with late-stage glioblastomas [40]. 
Thus, further investigation should be conducted to assess its 
potential use for peptide-drug conjugation in pancreatic cancer 
patients. A 2015 review concluded that anti-ανβ3 or anti-αν 
integrin agents may have improved efficacy in PDAC patients and 
should be pursued further [41]. Table 1 provides a condensed 
overview of common peptide-drug conjugates currently under 
clinical trial investigation for cancer treatment. 

Other notable peptide receptors: Additional small peptides are 
also noteworthy for their potential therapeutic uses in PDAC cells, 
including Somatostatin, Bombesin, and Neurotensin. These small 
peptides can penetrate tumors faster than monoclonal antibodies, 
but have a short biological half-life and lose binding affinity upon 
coupling with a chelator [24]. Additionally these peptides can 
be utilized in diagnostic imaging as radiopharmaceuticals that 
bind to Bombesin receptors have shown promise in non-invasive 
diagnosis and radiotherapy of GRP receptor positive pancreatic 
tumors [24]. Valkema et al. conducted a promising study where 
58 gastroenteropancreatic neuroendocrine tumor patients were 
treated with escalating doses of a radiolabeled somatostatin 
analog; 57% of patients showed some degree of response to 
therapy and benefitted from a longer overall survival [42]. In 
sum, more clinical trials must be conducted to evaluate the use 
of these peptides in PDAC patients. 

 

Figure 2 Receptor-mediated endocytosis allows for internalization of drug-peptide conjugate.
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Peptides’ role in immunomodulation 
In addition to enhancing the delivery and efficacy of traditional 
chemotherapeutics via conjugation, peptides and proteins can 
also be targeted to condition and modify the body’s intrinsic 
immune response to combat pancreatic cancer. 

The development of therapeutic vaccines for human cancers is 
not a new concept. The most well-known studies in this area 
have come from breakthroughs in the treatment of human 
papillomavirus (HPV) related cervical cancers [43]. For example, 
the fusion protein vaccine TA-CIN was designed to target the E7 
protein, an important structural and oncogenic component of 
HPV. TA-CIN does so by eliciting a robust host CD8+ T cell response 
[44]. It is important to note that these therapeutic vaccines are 
of different nature than preventive vaccines. Preventive vaccines 
for human cancers are currently only available for HPV-related 
cervical cancer [45] and HBV-related hepatocellular carcinoma 
[46]. Our discussion today will be focused on the development of 
therapeutic vaccines for pancreatic cancer. 

One of these regimens currently under active clinical investigation 
for pancreatic cancer is a dendritic cell (DC)-based vaccine 
targeting MUC1 [47]. MUC1, mentioned previously regarding 
its use in imaging, is a transmembrane mucin protein seen in 
over 90% of all PDAC cells. Its expression levels have also been 
shown to be linked directly with treatment-resistance metastatic 
progression via upregulation of drug efflux pumps [48,49].

The MUC1 glycosylated transmembrane mucin protein and 
other mucins present on the surface of PDAC cells contribute to 
the chemotherapeutic resistance of the tumor by upregulating 
p-glycoprotein or P-gp, a known drug efflux pump [49]. This 
leads to resistance to chemotherapy drugs (e.g. Paclitaxel-PTX) 
and poor prognosis [48]. DC-based vaccines are designed to 
elicit a CD8 T cell response specific to mucins such as MUC1, 
thus enhancing immune-mediated tumor killing [52]. Figure 3 
demonstrates of the mechanism of the vaccine. In several phase 
I/II studies, this vaccine was investigated to be safe and elicited 

a strong MUC1-specific response, albeit without clear effects on 
clinical significance [50,51]. In one study conducted by Lepisto et 
al., twelve patients with advanced PDAC were vaccinated after 
surgical resection, and four out of the twelve survived to the 5th year 
post-surgery [52]. If such results can be replicated in larger scale 
studies with consistency, these DC-based vaccines could become 
a powerful treatment tool when used in conjunction with surgical 
resection and traditional chemotherapy. One other such DC-
based vaccine targets mesothelin (MSLN), a surface glycoprotein 
involved in cellular adhesion that is often overexpressed in PDAC 
[53]. Miyazawa et al. investigated the vaccine and found that it 
activated both CD4 and CD8 T cell responses against the tumor, 
although further studies are needed to evaluate the vaccine’s 
clinical significance and long-term mortality benefit [54]. A 2018 
Japanese study also investigated a DC-based vaccine targeting 
the Wilms’ Tumor 1 (WT1) antigen of pancreatic cancer. They 
determined in the phase I trial that the vaccine was safe and that 
seven out of eight patients demonstrated WT-1 specific CD8 T 
cell response [55]. Guang et al. manipulated DCs in a different 
manner to induce cytotoxic T cell response [56]. They configured 

 

Figure 3 DC-based vaccine elicits CD8+ T cell response to MUC1 
on PDAC cell membrane. 

Peptide Vehicle Targeted Receptor Conjugation to Chemotherapy 
Drug(s)

Current Clinical Trials Clinical Trial Phase

RGD Integrin ανβ3 [64] CPT [64] - -
iRGD Integrin ανβ3/ ανβ5 

[64], NRP-1 [65]
PTX [65] - -

octreotide SSTR2/5 [64] PTX [64] - -
D-Lys6-LHRH LHRH-R [64] Dox (SM), CPT [64] Advanced LHRH-receptor-expressing 

solid tumors [66]
3

Angiopep-2 LRP-1 [64] PTX (SM) Metastatic breast cancer [67] 2
GE11 ErbB1 (EGFR) [64] Se NPs [68], PEG [69] - -
GnRH Type II GnRH-R [64] Sunitinib [70] - -
SST SSTR1-5 [64] CPT [64] - -
CNGRCG CD13 receptor[64] hTNFα (Protein) [64] Malignant pleural mesothelioma [71] 3
Polyglutamic acid - PTX (SM) [64] Non-small cell lung cancer [72] 3
LHRH LHRH-H [64] CLIP71 (lytic peptide) [64] Advanced, LHRH-receptor-expressing 

solid tumors[73]
1

DRDDS (spacer) Folate receptor [64] DAVBLH (SM) [64] Epithelial ovarian cancer[74] 3
D-γ-E-γ-E-γ-E-E (masking 
moiety)

PSMA [64] 12ADT-Asp[64] Advanced solid tumors [75] 2

Table 1 Common Antineoplastic Peptide-Drug Conjugates and Associated Clinical Trials.
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DCs to present KRAS mutant peptides with cationic nanoparticles 
and found that the resulting CD8 T cells showed specific killing 
activity towards pancreatic cells expressing the KRAS mutant in 
mice. 

Other immunogenic peptide targets that are under investigation 
for therapeutic vaccine development in include telomerase 
peptide GV1001 [57], vascular endothelial growth factor receptor 
1/2 [58] and survivin, a class of apoptosis inhibitors [10,59]. 
Interestingly, patient with PDAC immunized with the survivin-
2B vaccine after surgical resection lived for 12 years, an extreme 
rarity given the traditionally poor prognosis of the cancer. Cases 
like these call for further investigation into the development 
of therapeutic peptide vaccines for pancreatic cancer. When 
used in conjunction with surgical resection and traditional 
chemotherapy, peptide vaccines may deliver promising results 
and inspire new treatment regimens. 

Direct peptide targeting of integral tumor 
functions
Peptides and proteins that are integral to the survival and 
proliferation of the pancreatic cancer cells can also be targeted 
directly to inhibit their activity and functioning. 

ADAM8 is a metalloprotease disintegrin that is crucial in PDAC 
cell migration and invasion. Its expression is linked with poor 
prognosis [60]. ADAM8, once multimerized, is shown to increase 
metalloproteinase (MMP) activity and interact with B1 integrin 
to faciliatate PDAC invasion. Schlomann et al. demonstrated that 
BK-1361, a peptide multimerization inhibitor of ADAM8, resulted 
in reduced invasiveness and metastasis of the cancer cells in mice, 
a mechanism further elucidated in Figure 4. ADAM8 is a MMP 
disintegrase that becomes active via multimerization at the cell 
membrane [60]. ADAM8 facilitates PDAC invasion and metastasis 
by increasing MMP activity and interacting with B1 integrin. 
MMPs remodel surrounding ECM to facilitate tumor growth [63]. 
BK-1361 is a peptide inhibitor of ADAM8 multimerization and 
is shown to reduce pancreatic cancer cell invasion in mice [60]. 
Lu et al. also explored the topic of MMP-2 peptide inhibitors, 
stating that peptides MS204C4 and M205C4 inhibited invasion of 
pancreatic cancer cells in vitro [13].

Angiogenesis is another process targeted by researchers using 
peptide therapy. Kern et al found that Troponin I, a peptide that 

normally functions in muscle cells, contained an active site pTnI 
that had antiangiogenic properties [12]. At a dose of just 1 ug/
mL, pTnI demonstrated strong inhibition of vascular endothelial 
growth factor production in PDAC cells in vitro. 

The loss of tumor suppressor p16, a cyclin-dependent kinase 
inhibitor, is observed in many human cancers, including PDAC. 
Hosotani et al investigated the inactivation of p16 in pancreatic 
cancer and designed the Trojan p16 peptide, which helped 
restore p16’s tumor suppressive functions. Using a BxPC-3 tumor 
model, they demonstrated that the Trojan p16 peptide resulted 
in significant apoptosis of tumor cells [61]. 

Certain antimicrobial peptides (AMPs) have also shown promise 
of anti-tumor activity in vitro. Deslouches et al. show that cationic 
amphipathic peptides demonstrate activity against both bacterial 
cell and cancer cell membranes. They posit that this mechanism 
is due to the high concentration of phosphtatidylserine, a 
negatively charged phospholipid, on the membrane of cancer 
cells [11]. The study of AMPs are currently more extensive 
than that of anti-cancer peptides, and may provide valuable 
prospects in the development of future peptide-based therapy 
for pancreatic cancer. 

Closing Remarks
The application of peptides and proteomics to the diagnosis, 
monitoring and management of pancreatic cancer opens a world 
of possibilities. The versatility of peptides allows researchers to 
conveniently configure them for their specific needs. 

Peptides can be detected as intrinsic diagnostic markers that 
PDAC cells produce or radiolabeled and paired with novel imaging 
techniques for more precise monitoring of tumor progression. 
Traditional chemotherapy drugs such as gemcitabine can be 
conjugated to peptide vehicles to enhance their permeability of 
the tumor tissue. These drug-peptide conjugates can be designed 
to enjoy higher bioavailability, potency as well as decreased 
side effects due to selective targeting. Therapeutic peptide 
vaccines are being evaluated in numerous phase I/II trials and 
have mostly demonstrated to be safe and immunogenic in 
mice and in vitro [50,51]. These vaccines are often designed to 
be given in conjunction with traditional chemotherapy post-
surgical resection to prevent PDAC recurrence or metastasis [52]. 
Researchers have also looked into using peptides to directly target 
vital functions of PDAC cells, including escape of apoptosis [61], 
membrane stability [11], tissue invasion [60] and angiogenesis 
[12]. The ongoing COVID-19 pandemic has seen tens of millions 
of dollars invested into biopharmaceutical research [62-75], 
which may create a ripple effect that helps advance therapeutic 
investigations in oncology as well. 

Pancreatic cancer may be one of the deadliest and most 
treatment-resistant neoplasms at present. However, with the 
advent of novel proteomic diagnostics and innovative peptide-
based therapies on the horizon, clinicians will be more confident 
in combating PDACs. With these new tools, they will be able 
to catch dysplastic change earlier, closely monitor neoplastic 
growth and metastasis, and design more powerful and efficacious 
therapeutic regimens for patients.

 

Figure 4 BK-1361 inhibits ADAM8 multimerization to hinder 
PDAC invasion.
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