
2016
Vol. 5 No. 1: 7

iMedPub Journals
http://www.imedpub.com

Review Artilce

Journal of Biomedical Sciences
ISSN 2254-609X

DOI: 10.4172/2254-609X.100021

© Under License of Creative Commons Attribution 3.0 License | This Article is Available in: www.jbiomeds.com 1

Ching-Yu Yen1,2,3, 
Shyun-Yeu Liu1,2,3,
Mei-Huei Lin4,5*,
 Young-Chau Liu5,6* 

1	 Department of Dentistry, Taipei 
Medical University, 250 Wuxing Street, 
Taipei City 110, Taiwan

2	 Department of Dentistry, National 
Defense Medical Center, No. 161, Sec. 
6, Minquan E. Rd., Taipei City 114, 
Taiwan

3	 Oral and Maxillofacial Surgery Section, 
Chi Mei Medical Center, Tainan City 
710, Taiwan

4	 Department of Biotechnology, Chia 
Nan University of Pharmacy, No. 60, 
Sec. 1, Erren Rd., Rende Dist., Tainan 
City 71710, Taiwan

5	 Department of Medical Research, 
Chi Mei Medical Center, No. 901, 
Zhonghua Rd., Yongkang Dist., Tainan 
City 710, Taiwan

6	 Division of Natural Science, College of 
Liberal Education, Shu-Te University, 
No. 59, Hengshan Rd., Yanchao Dist., 
Kaohsiung City 82445, Taiwan 

Corresponding author: 
Young-Chau Liu 
Mei-Huei Lin  
 

 god15539@stu.edu.tw 
    mhlin3224@mail.cnu.edu.tw 
Division of Natural Science, College of 
Liberal Education, Shu-Te University, No. 59, 
Hengshan Rd., Yanchao Dist., Kaohsiung City 
82445, Taiwan

Department of Biotechnology, Chia Nan 
University of Pharmacy, No. 60, Sec. 1, Erren 
Rd., Rende Dist., Tainan City 71710, Taiwan

Tel: 886-7-6158000, ext. 4210
       886-6-2664911, ext. 2551

Citation: Yen CY, Liu SY, Lin MH, et al. 
Areca Nut contains both Apoptosis- and 
Autophagy-inducing Ingredients and its 
Possible Effects on Cancer Cells. J Biomedical 
Sci. 2016, 5:1.

Areca Nut contains both Apoptosis- and 
Autophagy-inducing Ingredients and its 

Possible Effects on Cancer Cells

Abstract
Autophagy is an evolutionally-conserved catabolic process that degrades damaged 
organelles, misfolded proteins, and toxic aggregates, reducing oxidative stress. 
Malfunction of autophagy causes various diseases, including cancer. Autophagy 
can be either tumor suppressive or promotive. Thus, autophagy modulation is 
being considered as a new strategy to improve cancer therapy. Areca nut (AN) 
is a worldwide popular carcinogen and contains apoptosis-inducing ingredients. 
However, we recently demonstrated that AN may predominantly induce 
autophagic responses in various types of cells. Furthermore, chronic exposure 
of cancer cells to this activity generally resulted in increased tolerance against 
environmental challenges, such as serum starvation, hypoxia, and anti-cancer 
drugs, through upregulated autophagy activity. We, therefore, propose that AN 
may have the potential to modulate tumors into an autophagy-addicted manner, 
raising the possibility of improving cancer therapy through autophagy inhibition 
especially in AN-addicted users.
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Autophagy background 
There are three major forms of autophagy: 

macroautophagy, microautophagy, and chaperon-mediated 
autophagy. Among them, macroautophagy (referred to as 
autophagy hereafter) has received extensive studies in the past 
decade. This evolutionarily conserved self-eating process delivers 
intracellular components to the lysosomal compartment for either 
recycling or degradation. It is thought that damaged proteins and 
organelles are degraded by basal levels of autophagy to maintain 
cellular homeostasis, or on the other hand, autophagy can be 
vigorously triggered for cells to survive nutrient-limited conditions 
[1]. Impairment of autophagy is now known to be associated 
with diseases including cancers [2]. Modulation of autophagy 
may nowadays represent a new direction for improved cancer 
therapy, which attracts great interest [3].

Tumor suppressive functions of 
autophagy 
Autophagy has been firstly thought to be tumor-suppressive as 
one of its key mediator, ATG6/BECN1, was demonstrated to be 
monoallelically lost in significant proportions of various types 
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As expected, autophagy inhibition has now become a potential 
method to improve cancer therapy. An important following 
question is that as autophagy is essential for some normal 
tissues, whether systemic autophagy inactivation may result in 
deleterious consequences? The water-soluble anti-malaria drug, 
hydroxychloroquine (HCQ), known to block lysosome function 
and the degradation of autophagy cargo, is currently being used 
in clinical trials against various cancers. It remains elusive whether 
HCQ is sufficiently selective and effective [31]. Efforts are thus 
needed in searching for more specific and potent methods to 
knockdown autophagy activity in tumors. 

Areca nut background
Betel quid (BQ) is a psychoactive and addictive carcinogen used 
by 200-600 million people worldwide. Recipes of BQ are varied 
in different regions of the world, including areca nut (AN, Areca 
catechu L.), lime, Piper betle leaf, Piper betle inflorescence, or 
clove [32,33]. Among these diversified components, AN is the 
essential and common constituent of BQ, which is also regarded 
as the human carcinogen [34]. Although tobacco is occasionally 
included in BQ, it has been found to only marginally increase the 
cancer risk [35]. 

Similar to tobacco, the carcinogenic N-nitrosamines can be 
derived from AN and cause some types of tumors in rats [36,37]. 
AN extract (ANE) generates reactive oxygen species (ROS) both 
in solution and saliva and modifies DNA to form 8-hydroxy-20-
deoxyguanosine [38,39]. Both cytostatic and cytotoxic effects of 
ANE on Chinese hamster ovary cells and human oral cancer cells 
have been described [40-42]. Two AN components, arecoline (the 
major alkaloid of AN) and oligomeric procyanidins, as well as the 
hydroxychavicol from the leaf and inflorescence of Piper betle, 
can induce apoptosis in both oral epithelial KB cells and mouse 
splenic lymphocytes [42-44]. Thus, chewing AN may conduct 
apoptotic stimuli to oral cells.

Linkage of AN with autophagy
Unexpectedly, we previously noticed that the partially purified 
30-100 kDa fraction of ANE (designated as ANE 30-100K) induced 
a different death pattern of oral carcinoma cells as that induced by 
arecoline. Arecoline induces cell shrinkage, caspase-3 activation, 
peri-nuclear condensation of chromatin, and micronucleation; 
whereas ANE 30-100K causes swallen morphology, emptiness 
of cytoplasm, nuclear condensation (without peri-nuclear 
condensation of chromatin, and micronucleation), accumulation 
of microtubule-associated protein 1 light chain 3 (LC3)-II (one 
of the hallmarks of autophagy) and generation of acidic vesicles 
in oral carcinoma OECM-1 cells [45]. ANE 30-100K, but not 
arecoline, can also increase LC3-II levels, a phenomenon further 
enhanced by lysosomal enzyme inhibitors, in both non-tumor 
oral fibroblasts and esophageal carcinoma CE81T/VGH cells, 
suggesting ANE 30-100K promotes autophagic flux [46]. In addition 
to these carcinoma cells and fibroblasts, ANE 30-100K also induce 
similar autophagic responses in peripheral blood lymphocytes 
and Jurkat T cells, suggesting ANE 30-100K as an autophagy 
stimulator in a wide spectrum of distinct cell types [45,46]. We 
also demonstrate that the autophagy-stimulating activity of ANE 

of cancers [4,5]. Further studies also showed that heterozygous 
disruption of beclin 1 increased the frequency of spontaneous 
malignancies and accelerated the development of hepatitis B virus-
induced premalignant lesions [6], and beclin 1+/- mutation in mice 
resulted in a high incidence of spontaneous tumors [7]. However, 
it is subsequently found that allelic loss of BECN1 promoted p53 
activation and reduced tumorigenesis [8], and mutational analysis 
of BECN1 revealed deletions of both breast and ovarian tumor 
suppressor breast cancer 1 (BRCA1) and BECN1, and deletions 
of only BRCA1, indicating BRCA1 to be the driver mutation [9]. 
Although other large-scale genomic analysis of human cancers 
also indicated that BECN1 is not a tumor suppressor [10,11], the 
role of autophagy in tumor suppression is still valid. For examples, 
autophagy deficiency may trigger oxidative stress, which leads 
to DNA damage and genome instability and is thought to cause 
tumor initiation and progression [12-14]. Indeed, autophagy 
deficient mice are shown to develop multiple benign hepatomas 
[15]. It is also known that ablation of autophagy brings about the 
chronic death of hepatocytes and inflammation, the key factors 
that can cause liver cancers [12,16,17].

Tumor promoting functions of 
autophagy 
Numerous evidence has confirmed that tumor cells may be more 
rely on autophagy than normal cells because they are frequently 
challenged by deficiencies in their microenvironment and 
increased demands of metabolites [18]. For instances, autophagy 
is upregulated in hypoxic tumor regions to promote the survival of 
tumor cells and helps melanomas to be more resistant to leucine 
deprivation [19,20]. In RAS-transformed cells, autophagy is also 
upregulated to facilitate cell growth, survival, and tumorigenesis, 
and required for oxidative and glycolytic homeostasis [21-23]. It 
is thought that mitochondrial metabolic defects and the resulting 
susceptibility to stress through autophagy inhibition may be 
the underlying mechanism in RAS-driven cancers. Indeed, it 
is followingly demonstrated that in RAS-activated mice, ATG7 
deletion causes accumulation of dysfunctional mitochondria, 
p53 activation, and growth arrest of non-small-cell lung cancer 
(NSCLC) [24]. Furthermore, loss of ATG7 can shift phenotypes from 
malignant adenomas and carcinomas to benign oncocytomas 
[25,26], and ATG5 deletion in RAS-activated and NSCLC-bearing 
mice results in a similar reduction of tumorigenesis as ATG7-
deficient mice [27]. These results establish a new concept that 
RAS-driven cancers may be addicted to autophagy [3].

There is also evidence suggesting that therapy-induced 
autophagy may function as the tumoral resistance mechanism. 
Melanomas with mutated BRAF often become resistant to BRAF 
inhibition (BRAFi). BRAFi-resistant tumors exhibit higher levels of 
autophagy, and patients with higher levels of therapy-induced 
autophagy show poor responses to BRAFi and a shorter duration 
of progression-free survival. In BRAFV600E melanoma cell lines, 
BRAFi or BRAF/MEK inhibition induced cytoprotective autophagy, 
and autophagy inhibition enhanced BRAFi-induced cell death 
[28]. In other settings of research, autophagy inhibition can 
increase the tumoricidal effect of mTOR inhibitors in both renal 
cell carcinoma and melanoma [29,30]. 
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it might be reasonable to speculate a positive role of such activity 
in tumorigenesis.

Analyses of the effects of chronic ANE or ANE 30-100 K treatment 
on different types of cells have supported our hypothesis. Firstly, 
both long-term non-cytotoxic ANE- and ANE 30-100K-treated 
cells generally express higher autophagy activities under 
glucose deprivation, hypoxia, and serum starvation. Secondly, 
these treated cells exhibit stronger resistance against hypoxia, 
anti-cancer drugs, and serum starvation. Finally, upregulated 
autophagy is illustrated to be responsible for the increased 
tolerance of chronic ANE- and ANE 30-100K-treated cancer 
cells against drugs and serum deprivation [48,49]. Additionally, 
autophagy mediators Beclin 1 and ATG5 are shown to be 
required for ANE 30-100K-induced autophagy; whereas the role 
of AMP-activated protein kinase may be cancer-dependent [49]. 
Collectively, our studies indicate that the autophagy-stimulating 
activity of AN may be tumor supportive, i.e., as those of RAS-
driven cancers, malignant cells developed in AN-addicted users 
might become autophagy-addicted. 

In conclusion, our studies have raised the possibility that inclusion 
of autophagy inhibition may improve the prognosis of cancer 
patients with the AN-chewing habit.

30-100K is sensitive to both cellulase and proteinase K digestion, 
indicating the autophagy-inducing AN ingredient (AIAI) to be a 
proteoglycan (or glycoprotein) [47].

We also notice that ANE but not ANE 30-100K activates caspase-3, 
probably due to the presence of aforementioned ingredients of 
apoptosis-inducing small molecules like arecoline and oligomeric 
procyanidins in ANE [45]. Moreover, despite the co-existence of 
apoptosis- and autophagy-inducing ingredients in ANE, most, if 
not all, ANE- and ANE 30-100K-treated cells exhibit morphological 
changes of autophagy rather than apoptosis before their death, 
suggesting that AN may transmit a dominant autophagic 
stimulation to oral cells.

Although as introduced earlier, autophagy may suppress cancer 
initiation and progression through the elimination of dysfunctional 
mitochondria to prevent the accumulation of detrimental free 
radical, our previous study reveals that ANE 30-100K itself 
stimulates an increase of intracellular reactive oxygen species 
[iROS], which is required for ANE 30-100K-induced autophagy and 
cytotoxicity [46]. Thus, ANE 30-100K-induced autophagy might 
be unable to prevent the elevation of iROS effectively. Since AN is 
a carcinogen with a newly defined autophagy-stimulating activity, 
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