iMedPub Journals http://www.imedpub.com

ARCHIVES OF MEDICINE

2016

Vol. 8 No. 3: 14

Association between *PTPN1* Single Nucleotide Polymorphisms and Type 2 Diabetes Mellitus: A Meta-analysis

Abstract

Background: Previous studies have reported the association of *PTPN1* single nucleotide polymorphisms (SNPs) and type 2 diabetes mellitus (T2DM) incidence. But the results remain inconclusive.

Methods: We performed a meta-analysis on the association between *PTPN1* SNPs and T2DM with pooled studies available. PubMed and EMBASE databases were searched up to June 15 2015. Case-control studies on the association between PTPN1 SNPs and T2DM susceptibility were included. The pooled association strength between PTPN1 SNPs and T2DM susceptibility was measured by odds ratio (OR) with 95% confidence intervals (95% CI) using random-effects model.

Findings: rs2230605(A>G) (A vs G : OR 1.13, 95% CI 0.72-1.78; AG vs AA: 1.17, 0.72-1.91) and rs1689673(148insG) (G vs O: 1.07, 0.93-1.25) were positively associated with T2DM susceptibility, whereas rs2230604(C>T) (TT vs CC: 0.74, 0.47-1.16; CT+TT vs CC: 0.89, 0.79-1.00; TT vs CT+CC: 0.76, 0.48-1.20), rs6126033(C>T) (T vs C: 0.86, 0.64-1.16; CT vs CC: 0.87, 0.66-1.14; TT vs CC: 0.85, 0.24-3.04; CT+TT vs CC: 0.86, 0.64-1.15; TT vs CT+CC: 0.86, 0.24-3.09); and rs2426159(A>G) (GG vs AA: 0.85, 0.65-1.10; AG+GG vs AA: 0.90, 0.75-1.08; GG vs AG+AA: 0.90, 0.74-1.10) were reversely correlated with T2DM.

Conclusions: Most of the SNPs genotyped were located at non-coding regions of *PTPN1*, suggesting that intact PTPN1 protein is essential for individual survival and growth. And the frequently observed reverse correlations between T2DM susceptibility and SNPs within non-coding regions of *PTPN1* suggest that those SNPs have negative impacts on *PTPN1* gene transcription.

Keywords: Type 2 Diabetes mellitus, Insulin, Hyperglycemia

Jun Wang¹, Hai-Lei Cui² and Xue-Lian Lan²

- 1 Nanjing Bio-pharmaceutical Innovation Platform, Nanjing, Jinagsu Province, PR China
- 2 International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongiqng, PR China

Corresponding author: Jun Wang

minxian.student@sina.com

Nanjing Bio-pharmaceutical Innovation Platform, Nanjing, Jinagsu Province, PR China.

Tel: +86-025-86905320

Citation: Wang J, Cui HL, Lan XL. Association between *PTPN1* Single Nucleotide Polymorphisms and Type 2 Diabetes Mellitus: A Meta-analysis. Arch Med. 2016, 8:3.

Received: April 01, 2016; Accepted: May 17, 2016; Published: May 24, 2016

Introduction

Type 2 Diabetes mellitus (T2DM) is a chronic disease characterized as hyperglycemia in the context of insulin resistance. Rates of T2DM have accelerated markedly since 1960, becoming a global epidemic recognized by the World Health Organization (WHO) [1,2]. With symptoms of excess thirst, frequent urination and constant hunger, T2DM is associated with a ten-year-shorter life expectancy [3]. In T2DM patients, failed response of cells to normal insulin level causes insulin resistance, which triggers liver inappropriately releases glucose into the blood [4]. Evidences have shown that deregulated insulin pathway is the major contributor in insulin resistance [5,6]. Tyrosine-protein phosphatase nonreceptor type 1 (PTPN1) negatively regulates insulin signaling pathway by dephosphorylating the phosphotyrosine residues of the activated insulin receptor kinase [7,8]. PTPN1 is considered a promising therapeutic target for the treatment of T2DM [9].

Initially, Bowden et al. observed evidence for association of the PTPN1-containing chromosomal region with T2DM [10], which has led scientists to evaluate the PTPN1 gene for association with T2DM. Efforts have been made to identifying T2DM associated single nucleotide polymorphisms (SNPs) of PTPN1, whereas the inconsistent and controversial results make linkages of these SNPs with T2DM remain inconclusive [11-17]. To evaluate the correlation between PTPN1 genetic polymorphism and T2DM susceptibility, a meta-analysis was performed to systematically

review the published studies focusing on associations of PTPN1 SNPs and T2DM.

Methods

Literature searching strategy

In order to get as many relative studies as possible, extensive literature searching in PubMed and CNKI was performed without language restriction using key words "PTPN1" or "PTPN1B " in combination with "SNP" or "Single Nucleotide Polymorphism" or/and "T2DM" or "Type 2 Diabetes". The last research was conducted on June 15, 2015. Reference list of selected citations were also checked for any eligible studies left behind.

Inclusion and exclusion criteria

Eligible studies were selected according to the following criteria: full text case-control studies; investigating the association between PTPN1 SNPs and clinically diagnosed T2DM, not insulin resistance phenotypes or impaired glucose tolerance; SNPs distribution within Hardy-Winberg equilibrium (HWE); providing detail genotype frequencies. The eligibility of each citation was performed by two reviewers independently according to the inclusion criteria.

Data extraction

The following data was extracted from each eligible study: name of the first author, publication year, country where the study was carried out, ethnicity, genotyping method, origin of control, genotyped SNPs, HWE, number of cases and controls, number of different genotypes in cases and controls. Data extraction was conducted by two reviewers independently.

Statistical analysis

The association strength between PTPN1 SNPs and T2DM susceptibility was measured by odds ratio (OR) with 95% confidence intervals (95% CI). The pooled ORs were obtained by random effects meta-analysis in allele (2 vs 1), heterozygote (12 vs 11), homozygote (22 vs 11), dominant (12+22 vs 11), and recessive model (22 vs 12+11) [18], respectively (2 represents minor allele). Influence analyses were conducted to determine the effect of individual study on pooled results and test the reliability of results [19]. I-squared was used to indicate the proportion of heterogeneity between studies in total variation. Meta-regression was performed to detect the source of heterogeneity [20] For meta-regression analysis, the genotyping methods were divided into two groups: sophisticated instrument aided (SIA) (metrix-assisted laser desorptio ionization-time of flight mass spectroscopy using a sequenom platform, SNPLexTM, or SNaPshot) and non-SIA (RFLP or Bi-PASA PCR); origins of control were classified into sex and age matched and non-sex and age matched; sample size was grouped into two: <1000 and >1000 subjects. Publication bias was detected with Begg's and Egger's test [21] and p<0.05 was considered significant. All the statistical analysis was performed with STATA software.

Results

Characteristic of eligible studies

We identified 13 case-control datasets from 8 citations [11-18] (Figure 1). Characteristics of the eligible datasets were summarized in Table 1 and Supplementary Table 1. Only one study was performed in Chinese Han population, whereas the rest were studies of Caucasian. Most of the citations were published in English, the rest two were published in Chinese and Spanish. T2DM cases were diagnosed using oral glucose tolerance test (OGTT) with the criteria of WHO. Blood samples were used for DNA extraction and genotyping in all studies. HWE distribution of genotypes was tested for all SNPs and most of them were in consistent with HWE except for rs914458(C>G) reported by Cheyssac et al. [13] and rs4811078 and rs2426158 reported by Bento et al. [22] SNPs deviated from HWE were excluded from meta-analysis. Twenty two PTPN1 SNPs were studied among these datasets.

Meta-analysis results

For most of these SNPs, meta-analysis was performed in allele, heterozygote, homozygote, dominant, and recessive model, respectively, whereas only allele and/or heterozygote model were conducted for those SNPs without homozygote cases (**Supplementary Table 2**). We observed increased risk of T2DM susceptibility to rs2230605 (A>G) (A vs G : OR 1.13, 95% CI 0.72-1.78; AG vs AA: 1.17, 0.72-1.91), and rs1689673(1484insG) (G vs O: 1.07, 0.93-1.25) (**Table 2**). Mild positive associations with T2DM incidence were found in rs3787345(T>C), rs6020594(A>G) (**Table 2**). Interestingly, some SNPs were found to be reversely correlated with T2DM susceptibility. Strong reverse correlation with T2DM was observed in rs2230604(T vs C: OR 0.90, 0.80-1.00; CT vs CC: OR 0.90, 0.80-1.02; TT vs CC: OR 0.74, 0.47-1.16; CT+TT vs CC: OR 0.89, 0.79-1.00; TT vs CT+CC: OR 0.76, 0.48-1.20) and rs6126033(T vs C: OR 0.86, 0.64-1.16; CT vs CC: OR 0.87, 0.66-1.14;

2016

Vol. 8 No. 3: 14

Iddle I Characteristics of the eligible studies	Table 1	Characteristics	of the	eligible	studies
--	---------	-----------------	--------	----------	---------

Author	Location/ Ethnicity	Cases/ Controls	SNPs studied	Genotyping Method	HWE	Gender	Diagnostic Method of Diabetes
Anaya et al. [16]	Peru/Peruvian	93/123	rs914458(C>G)	PCR and ABI Prism 310	Yes	Mixed	Diagnosed from hospital
Bodhini et al. [11]	India/Indian	262/249	rs941798(A>G) rs3787345(T>C) rs2230604(C>T) rs2282147(C>T) rs718049(T>C) rs718050(G>A) rs1689673(148insG)	PCR-RFLP	Yes	Mixed	Fasting plasma glucose>=7 mmol/L or 2 h postglucose value>=11.1 mmol/L
Ding et al. [17]	China/Han population	108/102	rs2230605(A>G)	Bi-PASA PCR	Yes	Mixed	Fasting blood- glucose>=7.8 mmol/L, 2h OGTT>= 11.1 mmol/L
Traurig et al. [12]	India/Pima Indian	573/464	rs3787345(T>C) rs2282147(C>T) rs718050(G>A) rs6020546(C>T) rs718630(T>G) rs3787335(T>G) rs1570179(C>T) rs754118(C>T) rs968701(A>G) rs3787348(G>T)	SNPlex	Yes	Mixed	OGTT using the criteria of the WHO
Małodobra et al. [18]	Poland/Polish	48/50	rs1689673(148insG)	PCR SNaPshot	Not mentioned	Mixed	
Cheyssac et al. [13]	France/French	325/311	rs941798(A>G) rs3787345(T>C) rs718050(G>A) rs3787335(T>G) rs1570179(C>T) rs754118(C>T) rs914458(C>G) rs6020563(T>G) rs6126033(C>T) rs2426159(A>G)	SNPlex	Yes Except rs914458	Mixed	Fasting plasma glucose>=7 mmol/L; or treatment by antidiabetic agents and IGF as as fasting plasma glucose between 6.2-6.9 mmol/L
Cheyssac et al. [13]	France/French	902/736	rs941798(A>G) rs3787345(T>C) rs718050(G>A) rs3787335(T>G) rs1570179(C>T) rs754118(C>T) rs914458(C>G) rs6020563(T>G) rs6126033(C>T) rs2426159(A>G)	SNPlex	Yes Except rs914458	Mixed	Fasting plasma glucose>=7 mmol/L; or treatment by antidiabetic agents and IGF as as fasting plasma glucose between 6.2-6.9 mmol/L
Bento et al. [14]	USA/American	575/510	rs941798(A>G) rs3787345(T>C) rs2282147(C>T) rs718049(T>C) rs718050(G>A) rs1689673(148insG) rs754118(C>T) rs3787348(G>T)		Yes except rs4811078 and rs2426158	Mixed	Not mentioned

ARCHIVES OF MEDICINE

Florez et al. [15]	USA/ Scandinavia	471/471	rs2230605(A>G) rs941798(A>G) rs3787345(T>C) rs2230604(C>T) rs2282147(C>T) rs718049(T>C) rs718050(G>A) rs6020546(C>T) rs718630(T>G) rs754118(C>T) rs968701(>-G) rs3787348(G>T) rs914458(C>G) rs6067484(A>G) p387L(T>C)	metrix-assisted laser desorptio ionization-time of flight mass spectroscopy using a sequenom platform	Yes	Mixed	OGTT
Florez et al. [15]	USA/Sweden	514/514	Same as above	Same as above	Yes	Mixed	OGTT
Florez et al. [15]	USA/GCI U.S.	1226/1226	Same as above	Same as above	Yes	Mixed	OGTT
Florez et al. [15]	USA/GCI Poland	1009/1009	Same as above	Same as above	Yes	Mixed	OGTT
Florez et al. [15]	USA/Canada	127/127	Same as above	Same as above	Yes	Mixed	OGTT
Total		6233/5892					

 Table 2 Meta-analysis results for SNPs prone to T2DM.

SNP	Model type	Number of datasets	OR	95% CI	I-squared	р _ь
rc222060E(A>C)	Allele (G/A)	Δ	1.13	[0.72-1.78]	58.00%	0.067
rszz30605(A>G)	Heterozygote (AG/AA)	4	1.17	[0.72-1.91]	55.10%	0.083
re1(20)(72)(14)(rec)	Allele (G/O)	0	1.07	[0.93-1.25]	26.20%	0.22
rs1689673(148insG)	Heterozygote(OG/OO)	ð	1.02	[0.89-1.17]	0.00%	0.693
rs6020594(A>G)	Allele (G/A)	F	1.03	[0.67-1.58]	56.20%	0.058
	Heterozygote (AG/AA)	5	1.03	[0.68-1.56]	53.20%	0.074
rs3787345(T>C)	Allele (C/T)		1.03	[0.95-1.11]	40.60%	0.087
	Heterozygote (TC/TT)		1.01	[0.92-1.10]	0.00%	0.504
	Homozygote (CC/TT)	10	1.05	[0.92-1.21]	30.70%	0.163
	Dominant (TC+CC/TT)		1.02	[0.92-1.13]	26.40%	0.201
	Recessive (CC/TC+TT)		1.05	[0.96-1.14]	0%	0.444

TT vs CC: OR 0.85, 0.24-3.04; CT+TT vs CC: OR 0.86, 0.64-1.15; TT vs CT+CC: OR 0.86, 0.24-3.09) **(Table 3)**. Relatively mild reverse associations with T2DM incidence were found for rs718049(T>C), rs718050(G>A), rs6020546(C>T), and rs718630(T>G) **(Table 2)**. No obvious associations with T2DM susceptibility were observed for the rest SNPs.

Heterogeneity

Heterogeneity between studies was low for most of SNPs concerned. For those comparisons with greater than 40% I-squared values, we investigated the source of heterogeneity by genotyping method, source of control, and sample size with meta-regression analysis. Meta-regression results revealed sample size and source of control, rather than genotyping method, contributed to the source of heterogeneity. Sample size could explain 8%, 12%, 11%, 12%, and 9% of the between studies variance for rs941798(A>G) (allele model), rs941798(A>G) (homozygote model), rs2282147(C>T) (allele model), rs2282147(C>T) (allele

model), respectively **(Table 4)**. Source of control could explain 32% and 100% of the variance for rs3787345(T>C) (allele model) and rs718049(T>C) (allele model) **(Table 4)**.

Sensitivity analysis and publication bias

For SNPs with at least 7 datasets, sensitivity analysis was performed to explore influence of individual study on the pooled results. The results showed that no individual study affected the pooled OR significantly for the SNPs studied (Data not shown). Publication bias was evaluated by Begg's and Egger's test. No significant bias was observed (p>0.05) **(Table 5)**.

Discussion

In this meta-analysis, 13 eligible datasets containing 6233 T2DM cases and 5892 control subjects, were included and analyzed. Overall 22 SNPs of PTPN1 were investigated. Most of *PTPN1* SNPs genotyped are located within non-coding regions. Our meta-analysis confirmed limited number of *PTPN1* SNPs associated with T2DM susceptibility. rs1689673(148insG) and rs2230605(A>G)

Vol. 8 No. 3: 14

Table 3 Meta-analysis results for SNPs reversely correlated to T2DM.

SNP	Model type	Number of datasets	OR	95% CI	I-squared	р
	Allele (T/C)		0.90	[0.80-1.00]	0.00%	0.857
	Heterozygote (CT/CC)		0.90	[0.80-1.02]	0.00%	0.893
rs2230604(C>T)	Homozygote (TT/CC)	6	0.74	[0.47-1.16]	0.00%	0.99
	Dominant (CT+TT/CC)		0.89	[0.79-1.00]	0.00%	0.848
	Recessive (TT/CT+CC)		0.76	[0.48-1.20]	0%	0.994
	Allele (C/T)		0.92	[0.84-1.00]	41.40%	0.115
	Heterozygote (TC/TT)		0.93	[0.84-1.02]	0.00%	0.603
rs718049(T>C)	Homozygote (CC/TT)	7	0.84	[0.71-1.01]	36.70%	0.149
	Dominant (TC+CC/TT)		0.90	[0.81-1.01]	24.90%	0.239
	Recessive (CC/TC+TT)		0.95	[0.84-1.06]	0%	0.943
rs718050(G>A)	Allele (A/G)		0.94	[0.88-1.00]	22.70%	0.234
	Heterozygote (GA/GG)		0.94	[0.87-1.02]	0.00%	0.841
	Homozygote (AA/GG)	10	0.89	[0.79-1.01]	9.90%	0.352
	Dominant (GA+AA/GG)		0.93	[0.86-1.01]	0.00%	0.514
	Recessive (AA/GA+GG)		0.93	[0.84-1.02]	0%	0.54
	Allele (T/C)		0.89	[0.74-1.08]	73.80%	0.002
	Heterozygote (CT/CC)		0.90	[0.74-1.09]	66.10%	0.012
rs6020546(C>T)	Homozygote (TT/CC)	6	0.95	[0.66-1.36]	32.70%	0.203
	Dominant (CT+TT/CC)		0.89	[0.72-1.09]	71.90%	0.003
	Recessive (TT/CT+CC)		0.99	[0.73-1.32]	7%	0.367
	Allele (G/T)		0.95	[0.90-1.03]	0.00%	0.776
	Heterozygote (TG/TT)		0.96	[0.86-1.06]	0.00%	0.96
rs718630(T>G)	Homozygote (GG/TT)	6	0.93	[0.82-1.06]	0.00%	0.8
	Dominant (TG+GG/TT)		0.95	[0.85-1.05]	0.00%	0.875
	Recessive (GG/TG+TT)		0.96	[0.86-1.08]	0%	0.891

Table 4 Meta-regression analysis.

CNID	Model	Lowened	Tour owned	Genotypi	ng	Source of co	ntrol	Sample size	
SNP		I-squared	lau-squared	Tau-squared	р	Tau-squared	р	Tau-squared	р
rs941798(A>G)	Allele	47.10%	0.0064	0.008	0.406	0.010	0.889	0.006	0.181
	Homozygote	44.50%	0.0239	0.028	0.378	0.036	0.920	0.021	0.173
rs3787345(T>C)	Allele	40.60%	0.0052	0.006	0.482	0.004	0.168	0.007	0.963
rs2282147(C>T)	Allele	46.40%	0.0067	0.009	0.564	0.007	0.366	0.006	0.193
	Homozygote	40.00%	0.0239	0.028	0.430	0.021	0.372	0.021	0.188
rs718049(T>C)	Allele	41.40%	0.0054	0.008	0.646	0.000	0.060	0.006	0.339
rs6020546(C>T)	Allele	73.80%	0.0369	0.034	0.309	0.034	0.309	0.049	0.962
	Heterozygote	66.10%	0.0353	0.031	0.267	0.031	0.267	0.050	0.993
	Dominant	71.90%	0.0435	0.040	0.301	0.040	0.301	0.058	0.995
rs754118(C>T)	Allele	43.20%	0.0055	0.008	0.570	0.007	0.447	0.005	0.218
	Allele	50.70%	0.0071	0.010	0.508	0.008	0.395	0.009	0.498
rs3787348(G>T)	Homozygote	47.90%	0.0263	0.038	0.563	0.025	0.340	0.032	0.464

were positively associated with T2DM susceptibility, whereas rs2230604 (C>T), rs6126033(C>T), and rs2426159(A>G) were reversely associated with T2DM susceptibility.

Our results confirmed the associations of rs1689673(148insG) with T2DM susceptibility, which are consistent with several casecontrol studies. Paola et al. identified 1484insG(a variation in 3'UTR of *PTPN1*) in two Italian populations, and 1484insG was further found to be associated with several features of insulin resistance [23]. Subjects carrying 1484insG showed over-expressed *PTPN1* mRNA in skeletal muscle. As PTPN1 is a negative regulator of the insulin signaling pathway, elevated expression of PTPN1 caused by 1484insG would lead to insulin resistance and T2DM susceptibility. Our pooled meta-analysis found no association of T2DM susceptibility with rs941798, rs754118, rs2282147, and rs3787348, which were reported as T2DM associated SNPs in the study of two independently ascertained collections of Caucasian subjects [22].

Our results showed that several SNPs [rs2230604(C>T), rs6126033(C>T), rs718049(T>C), rs2426159(A>G), rs718050 (G>A), rs6020546(C>T), and rs718630(T>G)] displayed reverse correlations with T2DM, indicating those SNPs are protective. Interestingly, rs6126033(C>T), rs718049(T>C), rs2426159(A>G),

.....

SNP Number o datasets	Number of	p values for Begg's Test				p values for Egger's Test					
	datasets	Allele	Heterozygote	Homozygote	Dominant	Recessive	Allele	Heterozygote	Homozygote	Dominant	Recessive
rs941798(A>G)	9	0.75	0.92	0.45	0.75	0.92	0.99	1.00	0.98	0.98	0.98
rs3787345(T>C)	10	0.37	1.00	0.28	0.59	0.59	0.39	0.74	0.39	0.53	0.45
rs2282147(C>T)	8	0.90	1.00	0.90	1.00	0.90	0.91	0.85	0.95	0.88	0.87
rs718049(T>C)	7	1.00	0.55	1.00	0.55	0.76	0.40	0.21	0.45	0.22	0.83
rs718050(G>A)	10	0.59	0.59	0.47	0.37	0.86	0.33	0.07	0.38	0.10	0.85
rs754118(C>T)	9	1.00	1.00	0.75	1.00	0.75	0.72	0.78	0.70	0.74	0.68
rs3787348(G>T)	7	0.76	1.00	1.00	1.00	1.00	0.57	0.51	0.59	0.58	0.51
rs914458(C>G)	8	0.54	0.17	0.90	0.39	0.90	0.65	0.24	0.77	0.42	0.57

Table 5 Begg's and Egger's test.

Only SNPs with at least 7 datasets were included for Begg's and Egger's test.

and rs718050(G>A) are intron variants, while rs6020546(C>T) and rs718630(T>G) are promoter variants. Intron variants might lead to impaired intron splicing followed by translation of PTPN1 mutant proteins. Reports have shown that some introns also possess transcriptional regulation activity [24-27], so both intron and promoter variants of *PTPN1* might suppress the transcription of *PTPN1* gene, resulting in active insulin signaling. Future investigations are needed to validate these hypotheses.

Due to limited number of datasets, we didn't stratify the datasets by ethnic group, genotyping method, source of control, or sample size. So any potential OR differences caused by these influential factors could not be distinguished. For most SNPs investigated, we didn't observed high heterogeneity between studies. Our meta-regression analysis indicates that different genotyping methods didn't contribute into the heterogeneity between studies, whereas the source of control and sample size were the influential factors to the pooled estimates. Adoption of sex- and age-matched control could partially avoid inclusion of unnecessary heterogeneity, and bigger sample size could make the statistics more authentic and convincing.

Of the 22 SNPs investigated, 19 SNPs are located in the non-coding regions of *PTPN1* (Supplementary Table 2). Of the 3 SNPs located in exons, only one SNPs leads to amino acid substitution. The disequilibrium distributions of SNPs between coding and non-coding region indicates that intact PTPN1 protein is essential for individual survival and growth. We hypothesized that, compared with SNPs in non-coding regions, individuals carrying SNPs in coding regions tended to be eliminated during evolution. So we suggest that underlying mechanism of *PTPN1* SNPs with T2DM susceptibility is more likely at gene transcription level.

In conclusion, our pooled meta-analysis produced more authentic and convincing results on T2DM associated *PTPN1* SNPs. More genetic studies are needed to validate the biological effects of those *PTPN1* SNPs at molecular level. The T2DM associated SNPs also have great guiding significance for therapeutic strategy development in clinical T2DM treatment.

References

- 1 Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 201 and 2030. Diabetes Res Clin Pract 94: 311-321.
- 2 Guariguata L (2012) By the numbers: new estimates from the IDF Diabetes Atlas Update for 2012. Diabetes Res Clin Pract 98: 524-525.
- 3 Vijan S (2010) In the clinic. Type 2 diabetes. Ann Intern Med 152: ITC31-15.
- 4 Bhatt HB, Smith RJ (2015) Fatty liver disease in diabetes mellitus. Hepatobiliary Surg Nutr 4: 101-108.
- 5 Okita K, Iwahashi H, Kozawa J, Okauchi Y, Imagawa A, et al. (2013) Homeostasis model assessment of insulin resistance for evaluating insulin sensitivity in patients with type 2 diabetes on insulin therapy. Endocr J 60: 283-290.
- 6 Matsuzaka T, Shimano H (2011) Molecular mechanisms involved in hepatic steatosis and insulin resistance. J Diabetes Investig 2: 170-175.
- 7 Combs AP (2010) Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity and cancer. J Med Chem 53: 2333-2344.
- 8 Rajala RV, Basavarajappa DK, Dighe R, Rajala A (2013) Spatial and temporal aspects and the interplay of Grb14 and protein tyrosine phosphatase-1B on the insulin receptor phosphorylation. Cell Commun Signal 11: 11-96.
- 9 Onoda T, Li W, Higai K, Koike K (2014) Evaluation of 147 Kampo prescriptions as novel protein tyrosine phosphatase 1B (PTP1B) inhibitory agents. BMC Complement Altern Med 14: 64.
- 10 Price J, Brewer C, Howard T (1997) Construction of a physical map of chromosome 20q12-13 and linkage disequilibrium analysis in diabetic nephropathy patients. Am J Hum Genet 58: A241.
- 11 Bodhini D, Radha V, Ghosh S, Majumder PP, Mohan V (2011) Lack of association of PTPN gene polymorphisms with type 2 diabetes in south Indians. J Genet 90: 323-326.
- 12 Traurig M, Hanson RL, Kobes S, Bogardus C, Baier LJ (2007) Protein tyrosine phosphatase 1B is not a major susceptibility gene for type 2 diabetes mellitus or obesity among Pima Indians. Diabetologia 50: 985-989.
- 13 Cheyssac C, Lecoeur C, Dechaume A, Bibi A, Charpentier G, et al. (2006) Analysis of common PTPN gene variants in type 2 diabetes, obesity and associated phenotypes in the French population. BMC Med Genet 7: 44.

- 14 Florez JC, Agapakis CM, Burtt NP, Sun M, Almgren P, et al. (2005) Association testing of the protein tyrosine phosphatase 1B gene (PTPN1) with type 2 diabetes in 7,883 people. Diabetes 54: 1884-1891.
- 15 Anaya MP, Garcia-Quispes WA, Soto FL, Rojas CP, Torres Gonzale D, et al. (2014) Genetic association analysis between SNP rs914458 of protein tyrosine phosphatase, non-receptor type 1(ptpn1) gene and Type 2 Diabetes in Peruvian Population. Horiz Med 14: 31-36.
- 16 Ding YJ, Peng HM (2007) Association of three genetic single nucleotide polymorphisms in PTPN gene with risk of type 2 diabetes mellitus in chinese han poupolation. Chinese Journal of Gerontology 27: 2310-2313.
- 17 Malodobra M, Lebioda A, Majda F, Skoczynska A, Dobosz T (2007) Correlation of SNP polymorphism in GAD2 and PTPN genes with type 2 diabetes in obese people. Via Medica Medical Publishers 7: 220-224.
- 18 Dersimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177-188.
- 19 Tobias A (1999) Assessing the influence of a single study in the metaanyalysis estimate. Stata Technical Bulletin.
- 20 Thompson SG, Higgins JP (2002) How should meta-regression analyses be undertaken and interpreted? Stat Med 21: 1559-1573.
- 21 Egger M, Davey SG, Schneider M, Minder C (1997) Bias in metaanalysis detected by a simple, graphical test. BMJ 315: 629-634.
- 22 Bento JL, Palmer ND, Mychaleckyj JC, Lange LA, Langefeld CD, et al. (2004) Association of protein tyrosine phosphatase 1B gene polymorphisms with type 2 diabetes. Diabetes 53: 3007-3012.
- 23 Di Paola R, Frittitta L, Miscio G, Bozzali M, Baratta R, et al. (2002) A variation in 3' UTR of hPTP1B increases specific gene expression and associates with insulin resistance. Am J Hum Genet 70: 806-812.
- 24 Stemmler MP, Hecht A, Kemler R (2005) E-cadherin intron 2 contains cis-regulatory elements essential for gene expression. Development 132: 965-976.
- 25 Hural JA, Kwan M, Henke G, Hock MB, Brown MA (2000) An intron transcriptional enhancer element regulates IL-4 gene locus accessibility in mast cells. J Immunol 165: 3239-3249.
- 26 Kwan M, Powell DR, Nachman TY, Brown MA (2005) An intron GATAbinding site regulates chromatin accessibility and is essential for IL-4 gene expression in mast cells. Eur J Immunol 35: 1267-1274.
- 27 Zhou G, Myers R, Li Y, Chen Y, Shen X, et al. (2001) Role of AMPactivated protein kinase in mechanism of metformin action. J Clin Invest 108: 1167-1174.