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Bayesian analysis of mammalian animals
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AB
ST

RA
CT Growth curve modelling which is a polular methodological tool due 

to its flexibility. The presence of many wild rabbits, the Oryctolagus 
cuniculus, in Australia are of major concern. Researchers were 
interested to investigate the age of the rabbits. Different types of 
models, including non-linear models were used. Besides, different 
types of plots and diagrams for the measures of efficiency were used. 
Results revealed that dry weight of eye lens of the rabbit has nonlinear 
relationship with the age of the rabbit. The different posterior summary 
measures shown that differences between the estimates of the models 
were shown.
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INTRODUCTION 

This study is about a Bayesian growth curve model for 
rabbit animal. Growth curve modeling, which is a popular 
methodological tool due to its flexibility in simultaneously 
analyzing both within-animal effects (e.g., assessing change 
over time for one animal) and between-animal effects (e.g., 
comparing differences in the change trajectories across 
animals).

The presence of many wild rabbits, i.e. the Oryctolagus 
cuniculus, in Australia are of major concern. To have more 
knowledge on this plague, researchers are interested to 
determine the age of the rabbits. While before the weight 
of the rabbit was used as a predictor of the age, the dry 
weight of the eye lens of the rabbit was proposed as a 
more reliable method of age determination. Therefore, a 
study was set up, where they measured the dry weight of 
the eye lens for free-living wild rabbits of known age [1].

MATERIALS AND METHODS
Data description: 72 observations from the slightly 
modified dataset of rabbit with two variables were given.

Age: Age of rabbit in days a covariate. 

Lens: Dry weight of eye lens in milligrams as a response.

Exploratory data analysis: As depicted in Tab.1, the age 
in days has a mean of 240 and standard deviation of 
212.7826 with a minimum and maximum days 2,860 
respectively. Whereas that of dry weight of the lens has a 
mean of 143.37 and standard deviation of 67.16638 in 
milligrams with minimum and maximum of -2.88, 
246.70 respectively [2].

Fig. 1 shows that the growth of dry weight of the eye 
lens by age (days) are not adequately characterized by a 
straight line-that is the growth of the rabbit is not linear. 
Instead, the growth proceed through a number of phases. 
In the first phase the growth of the animal highly 
increased, and then after the growth becomes stable, and 
stable towards a final asymptote. To model growth of the 
rabbit dry weight in eye lens by age properly, a statistical 
model must accommodate the nonlinear growth pattern 
[3].
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RESULTS AND DISCUSSION
Model fitting 1: Th first nonlinear model Suggested 
for rabbit dataset is given as below.

Where, α, β and γ unknown parameters and £ a normally 
distributed error term with constant variance (σ2). In this 
model, LENSi is the response measured for the rabbit 
i=1, ...71 and Agei the age (days) in which dry weight of 
eye lens were measured i=1, ...71 observation. Before the 
model was fitted for the final analysis, data was cleaned by 
removing one observation that have negative value since 
the dry weight of eye lens could not be negative. Before 
we remove it, we did the analysis with and without that 
observation, and we obtained that the estimates have no 

difference at all. Then the final analysis was done with 71 
observations [4].

This model was fitted using vague priors for all model 
parameters and by taking three chains for each parameter. 
The convergence of the model was then assessed as 
presented by history plots after 50000 itp erations with 
burn in period of 20000 and Brooks-Gelman-Rubin 
(BGR) Diagnostic as shown in Fig. 2 and 3. The history 
plots in Fig. 2 show quite a different sampling behavior for 
the regression parameter than γ parameter. The plots for 
the regression parameters exhibit slow mixing, but there is 
rapid mixing for the γ parameter. The posterior distribution 
is therefore rapidly explored in the direction of γ but slowly 
explored in the α; β; σ-subspace relatively. However, after 
forgetting their starting values, the parameters evolves to a 
relatively stable pattern [5].

Variable Minimum Median Mean SD Maximum

Age 2.00 193.5 240.00 212.7826 860.00

Lens -2.88 177.64 143.37 67.16638 246.70

Tab.1. Descriptive statistics for  
rabbit data.

Fig.1. Dry weight of eye lens 
versus age.

Fig. 2. History plot.
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The Gelman-Rubin convergence diagnostic test also shows 
that the chain converged for all regression parameters as 
shown in Fig. 3 for all parameters the estimated Potential 
Scale Reduction Factor (PSRF) are less than 1.1 or 1.2 
which implies the chains are mixing well and the posterior 

distribution were converged.

The efficiency of MCMC method can be measured by 
the ratio of MC Standard Error (MCSE) to the Standard 
Deviation (MCSE/SD). MCSE/SD gives the posterior 
variability due to MCMC simulation (Tab. 2).

Fig.3. Brooks-Gelman-Rubin 
diagnostic.

Fig. 4. Autocorrelation function.

Tab. 2. Measures of efficiency. SD MCSE MCSE/SD
Effect sample 

size

Parameters 3.965 0.04365 0.0110 22000

α 3.157 0.03996 0.0126 14000

β 0.1429 5.798E-04 0.0042 20000

ϒ 1.078 0.003781 0.0035 90000

Therefore, it is observed from Tab. 2 that the MCSE=SD 
for parameters alpha and beta are about 1%, and for 
gamma and sigma are about 0.4% and 0.3% respectively. 
The result for the parameters alpha and beta implies 
that the posterior variability due to MCMC simulation 
in alpha as well as in beta is only 1%, this is suggesting 
that the MCMC method is efficient. The same is true for 
the parameters gamma and sigma with 0.4% and 0.3% 
implying that only 0.4% in gamma and 0.3% in sigma 
the posterior variability occurred due to MCMC method, 
which is very small variability and is indicating that the 

MCMC simulation method is efficient [6].

In addition to that it can also be measured by Effective 
Sample Size (ESS) and Autocorrelation Function (ACF) 
as presented. A high value of the ESS in Tab. 2 implies 
that how the MCMC method was efficient, and also the 
low autocorrelation presented in Fig. 4 depicted how 
the MCMC method was efficient as we can see from the 
plot ACF for all parameters is about zero after lag-50. In 
conclusion the high ESS and the small ACF implies that 
MCMC method was efficient.

Assumptions of error terms: The residual plot in Fig. 
5(a) seems to indicate that the residuals and the fitted 
values are in a hoT moscedastic variation with  normally 

distributed errors. A Q-Q plot in Fig. 5(b) that plotted for 
two sets of quantiles against one another shows that the 
quantiles came from the same normal distributions [7].  
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Moreover, Posterior Predictive Checks (PPC) are used only 
as measures of discrepancy between the model and the data 
in order to identify poorly fitted models (model adequacy) 
and not for model comparison and inference. As the aim 
of PPC is to assess the systematic discrepancies between the 
observed data and (hypothetical) replicated data generated 
from the fitted model, P-values for Skewness and kurtosis 

of test statistic and discrepancy measures were given here. 
As it was observed from the Tab. 3, the p-values are higher 
than 5% significance level except for the Skewness test. 
Although Skewness test indicates that there is no goodness 
of fit, this was not confirmed by the kurtosis measure of 
discrepancy. Therefore, the model fits the data well [8].

Fig. 5. Assumption for error 
term. 

Tab. 3. Posterior Predictive Checks 
(PPC) for checking model adequacy.

Fig. 6. Posterior predictive hecks.

Test PTskew PDskew PTkurt PDkurt

Estimate 0.00012 0.07850 0.99700 0.60000

The histogram of the kurtosis in Fig. 6 (a) seems that the 
concentration of the observation is too much at the center 
we can call it Leptokurtic. But the kurtosis discrepancy 
measure in Fig. 6 (b) seems the distribution is symmetric 
and normal. But the histogram in Fig. 6 (c) is moderately 
skewed left, the left tail is longer and most of the 

distribution is at the right. Also the measure of Skewness 
discrepancy measure seems the distribution of the data is to 
one direction as we can see from the Fig. 6 (d). From this 
we can conclude that the distribution of the observation by 
measure of kurtosis discrepancy seems normal. 

For checking the outlying observations, index plot of icpo 
(inverse conditional predictive ordinate) was used (Fig. 7). 
Since a small value of iCPO (larger value of CPO) implies 
a better fit of the model to a single observation, and large 
iCPO valus (low CPO values) suggested that observation 

is an outlier and an influential observation. Due to 
the face that Inverse-CPO’s (ICPO’s) larger than 40 
can be considered as possible outliers, and higher than 
70 as extreme values, the index of iCPO pointed that 
there  seems  five possible outlying regions, i.e. regions 
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6, 36, 44, 55 and 65 might be considered as outlying. 
These  regions   in    turn    considered    of   considerable 

observations, but possibly region 6 is the extreme region 
with about 5 observations [9].

Fig. 7. Index plot of iCPO.

Model fitting 2: The second nonlinear model assumed 
for the Rabbit data set is given as below.

with α, β and γ unknown parameters and £ a normally 

distributed error term with constant variance (σ2). In this 
model LENS i is the response measured for the rabbit i = 1; 
:::71 and Age i the age (days) in which dry weight of eye 
lens were measured i = 1; :::71 observation.

In order to select the best one from models (1) and, 
Deviance Information Criteria (DIC) was used (Tab. 4).

Tab. 4. The two models and their respective 
DIC values.

Model DIC

Model I 561.768

Model II 678.096

As a very roughly rule of thumb, differences of more than 
10 might definitely rule out the model with the higher 
DIC. As it is observed in Tab. 4, model 1 is taken as the 

best since its DIC value is smaller than that of model 2 and 
the difference is clearly visible that is more than 10 (Tab. 
5).

Node Mean SD MC error 2.50% Median 97.50% Start Sample

Model I

α 252.4 4.001 0.045 244.7 252.4 260.4 20001 90000

β 79.69 3.189 0.042 73.58 79.63 86.14 20001 90000

ϒ 0.777 0.142 5.42E-4 0.518 0.790 0.991 20001 90000

σ 12.43 1.078 0.004 10.54 12.35 14.76 20001 90000

Model II

α 4.507 0.039 6.80E-4 4.43 4.507 4.586 20001 90000

β 115.9 15.88 0.273 87.48 114.9 150 20001 90000

ϒ 0.742 0.144 5.21E-4 0.512 0.738 0.987 20001 90000

σ 28.19 2.433 0.009 23.89 28.03 33.39 20001 90000

Tab. 5. Posterior summary measures 
of model 1 and model 2.

It is depicted from Tab. 5 that the estimated values (mean) 
and median for α and σ are higher in model I than in model 

II, but for β they are higher in model II. The credibility 
equal tail interval for respective parameter gives the domain 
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(interval) of the posterior probability of that parameter 
estimate. The MC errors are small (smaller than 5% SD) in 
all parameters of both models. 20001 and 90000 implies 
that 20000 burn-in iterations and 90000 extra iterations 
were performed.

To compare the estimated curves of the two models, Fig. 8 
was given below.

Fig. 8 indicated that the fitted average curve for model I 
seems to have the better fit as compared to that of model II.

Fig. 8. Estimated average 
curves of the two models. 

CONCLUSION
In order to have some insight in to the data, descriptive 
statistics using tabular and graphical description was 
done. From the growth curve it was depicted that the dry 
weight of eye lens has a nonlinear relationship with age. 
Observing this, two different nonlinear models were fitted 
separately using vague priors for all parameters, and taking 
three chains their convergence were assessed. Eventually, 
as the MC error of each parameter was less than 5% of 
its respective standard deviation, well convergence was 

observed. Goodness of fit test was done using posterior 
predictive checks, and was shown that the model fitted the 
data well. Moreover, conditional predictive ordinate was 
used to check outlying observations, and some outlying 
observations were observed. The two models were compared 
using DIC, and model I was chosen as the best model as 
it has small DIC. As well, the posterior summary measures 
for all the model parameters of models were assessed, and 
in some case, differences between the estimates of the two 
models were revealed. Choosing model I as the best using 
DIC was also confirmed by the estimated average curves.
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