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C2AZ as Treatment Adjunct - A Review

Abstract
This paper is a technical note showing how the established pharmacodynamic 
actions of four non-oncology drugs happen to inhibit several established 
pathophysiological mechanisms active in driving or facilitating breast cancers’ 
growth. The resulting four repurposed drug regimen, C2AZ, uses the analgesic 
drug celecoxib; the antifungal drug clotrimazole; a drug used to treat rheumatoid 
arthritis, auranofin; and a drug used to treat asthma, zileuton. All four have a large 
database showing that they inhibit one or more growth driving pathways of breast 
cancer. The four drugs of C2AZ have been well tolerated in general medical practice 
and no drug-drug interaction is predictable. All four are old, cheap, generic drugs. 
They are predicted to be growth retarding rather than directly cytotoxic so C2AZ 
would best be studied in an adjunctive role.
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Introduction
This paper presents the rationale for addition of an antifungal 
drug, clotrimazole, an analgesic drug, celecoxib, an anti-
rheumatoid arthritis drug, auranofin, and an anti-asthma drug 
that inhibits 5-lipoxygenase (5-LO), zileuton - the C2AZ Regimen 
- as adjunctive treatment of breast cancer. As things now stand 
(as of Summer 2020), breast cancer, once it has metastasized, is 
incurable. The four drugs of C2AZ have been well tolerated when 
used individually in general medical practice and, surprisingly, all 
have robust preclinical database supporting their adjunctive use 
in treating breast cancer. They have never been used clinically for 
breast cancer.

Nests of metastatic breast cancer cells can remain quiescent 
for years, then for as yet to be identified reasons, they exit the 
dormant state, start dividing, actively growing, and further 
metastasizing [1-3]. One could infer that dormant breast cancer 
nidi are actually the predominant breast cancer form from the 
fact that punctilious autopsy of middle-aged women dying from 
non-cancer causes, 18% had occult in situ breast cancer as did 
elderly women dying of non-cancer causes [4].  It is the aim of 
C2AZ to increase the chance of breast cancer cell nests to remain 
dormant. Details follow:

Literature Review
High dose celecoxib
Celecoxib is an analgesic drug, generically available and 
widely used in low doses for treating pain. It is a selective 
cyclooxygenase-2 (COX-2) inhibitor that also inhibits several 
isoforms of carbonic anhydrase. 99% of metastatic breast cancers 
grossly overexpress COX-2 [5]. Although COX-2 has commonly 
been called “... a ubiquitous driver of mammary carcinogenesis...” 
[5]. This must be understood as one driver among many cross-
covering drivers.

The role of COX-2 and its eicosanoid prostaglandin product PGE2 
in breast cancer growth and its associated immunosuppression 
has been the subject of several recent reviews [5-10]. People dying 
of metastatic breast cancer had grossly elevated RNA transcripts 
levels of both 5-LO and COX-2 [11]. Note the particular value 
of combined inhibition of PGE2 formation by COX-2 inhibition 
with simultaneous leukotriene synthesis inhibition during 
breast cancer treatment [9,12-16]. C2AZ aims to achieve this by 
combining high dose celecoxib with zileuton (vide infra). Giving a 
leukotriene inhibitor with any COX inhibitor when treating cancer 
is important to obviate shunting from COX inhibition to increased 
leukotriene synthesis [15,16].

Celecoxib inhibits CA IX with a Ki of ~ 16 nM, comparable to the 
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traditional, clinically used, archetypal, nonselective carbonic 
anhydrase inhibitor acetazolamide, that has Ki variously reported 
as 5 to 25 nM [17-21]. Celecoxib’s plasma concentration-time 
curve is dose proportional between 200 and 800 mg, Tmax is 
2 to 4 hours, T1/2 is 11 hours, Cmax after an 800 mg dose is ~ 
2.9 ± 0.4 mg/L. Celecoxib is 98% albumin bound. Celecoxib is 
metabolised primarily by hepatic CYP2C9 [22]. IC 50 is 15 ± 1 μg/L 
for COX-1 and 0.04 ± 0.01 μg/L for COX-2 giving a selectivity ratio, 
COX-1: COX-2 of 375 [22]. Although celecoxib is a sulfonamide, 
allergic reactions in people who are sulfonamide allergic are 
not common. A curiosity of COX-2 is, that while it is traditionally 
termed an inducible isoform and COX-1 the constitutive form, 
COX-2 is constitutively expressed in the human brain and renal 
macula densa and adjacent cortical thick ascending limb [23].

In searching for drugs that might augment auranofin’s selective 
cytotoxicity to cancer cells, a high-throughput drug screening 
identified celecoxib [24]. The combination generated greater 
oxidative stress than either alone did mitochondrial hexokinase 
inhibition with catastrophic decrease in intracellular ATP without 
seeming to impair non-malignant tissue function or vitality [24]. 
Celecoxib together with auranofin (vide infra) are particularly 
effective in increasing damaging intracellular ROS to which cancer 
cells are more sensitive than non-malignant cells [24,25].  In 
short, inhibition of carbonic anhydrase and COX-2 with high dose 
celecoxib is eminently worth trying in metastatic breast cancer.

Clotrimazole
Clotrimazole is a broad-spectrum antifungal drug, most commonly 
used today as oral troches to treat mucositis, or topical 1% cream 
to treat tinea corporis, pedis, or intercruralis. Clotrimazole has 
excellent oral bioavailability. Since the potential advantages of 
adding clotrimazole to current treatments of GB in 2010 [26], 
much new data on the general cancer-growth inhibiting effects 
of clotrimazole has accrued. Clotrimazole inhibited proliferation 
of human breast cancer cell lines MCF-7, MDA-MB-231 and T47D 
[27-29].

Clotrimazole and KCa3.1
The outer cell membrane intermediate-conductance Ca++ 
activated K+ channel (KCa3.1) is inhibited by clotrimazole in an 
intermediate nM range [30-32]. Well-functioning KCa3.1 channels 
drive breast cancer growth and KCa3.1 inhibition impairs breast 
cancer cells’ growth [33-37]. 

KCa3.1 opening triggers or induces the secretion of IL-1beta, 
an effect blocked by clotrimazole [38].  IL-1beta also promotes 
is growth in breast cancers and contributes to the characteristic 
local immunosuppression [39-44]. IL-1beta also enhances or 
induces a shift towards glycolysis via glycerol-3-phosphate 
dehydrogenase phosphorylation [45].

Phosphofructokinase inhibition and inhibiting 
glycolysis: Potential for reversing Warburg effect
Clotrimazole directly inhibits function of a key glycolytic enzyme 
- phosphofructokinase [46-50]. Part of glycolysis, aerobic or 
anaerobic - occurs free in the cytosol, but partly occurs where 
the enzymes mediating the steps are held in cytosol but on 

an actin filament scaffolding. Clotrimazole untethers these, 
predominantly phosphofructokinase, resulting in its inhibition 
[28,51,52]. Clotrimazole decreases glycolysis in other cancer 
model systems with consequent retardation of growth. Direct 
inhibition of breast cancer growth by clotrimazole has been 
demonstrated [48,53].

The Warburg effect of increased aerobic glycolysis has been widely 
demonstrated in the common cancers and specifically in breast 
cancer [54-60]. This makes phosphofructokinase a particularly 
attractive target for inhibition in that phosphofructokinase is a 
rate limiting enzyme in aerobic (and anaerobic) glycolysis.

It is precisely the cancer stem cell subpopulation that is particularly 
associated with increased glycolysis and relative radio resistance. 
Indeed, when forced to switch from reliance upon glycolysis 
by clotrimazole inhibition of phosphofructokinase, stem-like 
features of glioblastoma are reduced [61]. We can expect the 
same in breast cancer [62-64]. Whether or not clotrimazole could 
be similarly helpful in human patients remains to be formally 
evaluated. In short, inhibition of KCa3.1 and phosphofructokinase 
with clotrimazole is eminently worth trying in metastatic breast 
cancer.

Auranofin
Auranofin is an inhibitor of cathepsin B and thioredoxin reductase 
[65,66]. It is FDA/EMA approved and marketed since the 1980s 
to treat rheumatoid arthritis [67,68]. Auranofin is now seeing a 
renaissance as treatment adjunct in several cancers, including 
breast cancer, by virtue of its inhibition of thioredoxin reductase 
[69-76]. Thioredoxin reductase recharges [reduces] oxidized 12 
kDa thioredoxin, a process essential to coping with mitochondrial 
reactive oxygen species (ROS). Thioredoxin donates reducing 
equivalents (electrons) to oxidized metabolic intermediates using 
an intermolecular cysteine thiol-disulfide exchange.

BRCA1 protein is part of a multimeric protein complex that repairs 
double strand DNA breaks. Mutations in BRCA1 predispose 
women to breast and ovarian cancer. Breast cancer cells with 
mutated BRCA1 are more sensitive to auranofin [77].  Auranofin 
was effective in reducing triple-negative breast cancer growth in 
in vitro and in xenograft models at auranofin levels that did not 
affect non-transformed breast cell viability [78,79]. Similar results 
from auranofin were seen in estrogen-progesterone receptor 
expressing breast cancer [80,81].

NRF2 is one of the main transcription factor regulators of the 
antioxidant responses. p53 is often mutated in breast cancer 
[82]. Thioredoxin is a mutant p53-activated NRF2 target with pro-
survival and pro-migratory functions in breast cancer cells under 
oxidative stress [83].

Nrf2 is a transcription factor of genes coding for antioxidant 
proteins. NRF2 is kept in cytosol by Kelch like-ECH-associated 
protein 1 (KEAP1) and Cullin 3, [84]. Kept in cytosol, Nrf2 tends 
to be degraded quickly. Unbound Nrf2 translocates to nucleus 
where it triggers transcription of its antioxidant target genes. 
Nrf2 is a transcriptional regulator that targets heme oxygenase-1 
(HMOX1), ferritin (FTH) genes, and that coding for thioredoxin 
(TXRD1). NRF2-driven metabolic reprogramming promotes 



3

ARCHIVOS DE MEDICINA
ISSN 1698-9465

2020
Vol.11 No.5:13

Translational Biomedicine
ISSN 2172-0479

© Under License of Creative Commons Attribution 3.0 License

Translational Biomedicine
ISSN 2172-0479

breast cancer cells’ exit from dormancy [85].  Human breast 
cancers overexpress Nrf2 and patient survival is shorter in those 
with higher Nrf2 expression, longer in those with lesser Nrf2 
expression [86,87]. Higher Nrf2 expression facilitates tumor 
neoangiogenesis as well [88].

Although there are doubtless a coalition of intracellular forces 
that together give rise to a cancer cells’ dormant state, Nrf2 is one, 
a consequence of which we might be able to inhibit. Auranofin 
inhibits thioredoxin reductase, thereby reversing a core effect of 
Nrf2 [24,78,79,89,90].  Thioredoxin and thioredoxin reductase 
tend to be elevated in a variety of the common lethal cancers [91]. 
Auranofin in high nanomolar concentration increased radiation 
induced cell death in MDA-MB-231 breast cancer cells [92].

Thioredoxin and thioredoxin reductase is located in both 
cytoplasmic and nuclear compartments of breast cancer cells 
[93]. Breast cancers with higher thioredoxin levels are more 
resistant to docetaxel [94]. By immunohistochemistry on 224 
breast cancers, high expression of cytoplasmic peroxiredoxin-I 
was a negative prognostic sign [95]. Thioredoxin 1 is increased in 
breast cancer tissue and in-patient sera even in those with stage 
1 disease [96,97].  In short, inhibiting thioredoxin reductase with 
auranofin is eminently worth trying in metastatic breast cancer.

Zileuton
Zileuton is an inhibitor of 5-LO, inhibiting formation of 5-LO 
products - leukotrienes LTB4, LTC4, LTD4, and LTE4. It is marketed 
and FDA/EMA approved to treat asthma [98,99]. Zileuton and 
inhibition of 5-LO decreases growth in a wide variety of cancers 
in preclinical study [100-110]. There has been no reported clinical 
study of zileuton in any cancer. Let C2AZ be the first.

5-LO sits at the branchpoint in the metabolism of arachidonate 
to leukotriene synthesis from prostaglandin synthesis [111]. 5-LO 
by itself is inactive. It requires 5-lipoxygenase activating protein 
(FLAP). FLAP is elevated in breast cancer tissue and degree of 
elevation was inversely correlated with survival [111].

Human breast cancers overexpress 5-LO [112,113]. Serum levels 
of 5-LO are elevated in breast cancer patients [114]. Untreated 
breast cancer cell lines synthesize large amounts of leukotriene 
LTB4 [115]. Insulin-like growth factor 1 stimulated growth and 
leukotriene synthesis in breast cancer cell line MCF-7 [116]. In 
vitro growth of human breast cancer cell line MDA-MB-231 was 
inhibited by non-marketed 5-LO inhibitors [117]. 

Human breast cancer exhibits a strong predilection for metastasis 
to bone. A nidus of bone resorption is required for that process 
to occur. In experimental models of breast cancer-mediated bone 
resorption, 5-LO inhibition inhibited that process [118,119].

5-LO product LTB4 stimulated breast cancer growth by a positive 
feedback loop with fatty acid synthase [120]. Agonism at the LTB4 
receptor mediated paclitaxel resistance in MCF-7 breast cancer 
[121]. Expression of BLT2, a LTB4 receptor, is upregulated in 
human breast cancer cells, suggesting an autocrine growth loop 
mediating aggressiveness [122-124]. Higher breast cancer tissue 
expression of BLT2 is associated with shorter survival [123]. This 

work also indicated that survival under high ROS load was partly 
dependent on LTB4-BTL2 signaling, leading to the conclusion in 
the current paper on C2AZ, that zileuton plus auranofin would be 
a particularly felicitous combination.

Serum alanine aminotransferase (ALT) must be monitored 
during zileuton treatment as this reflects occasional liver injury 
with zileuton. ALT elevations usually resolve upon zileuton 
discontinuation. Standard zileuton dosing in asthma would be 
two 600 mg extended-release tablets twice daily within one hour 
of morning and evening meals [125].

In a murine breast cancer study, zileuton decreased metastasis 
and circulating breast cancer cells [126]. Leukotrienes are 
instrumental in new vessel formation associated with breast 
cancer growth [127]. 5-LO products, specifically LTB4 contribute 
to the immunosuppression and Treg generation in breast cancer 
[128]. Neutrophils are active in 5-LO leukotriene generation that 
facilitate establishment of breast cancer metastases [129]. In 
short, inhibiting 5-LO with zileuton is eminently worth trying in 
metastatic breast cancer.

Discussion
Two genes are synthetic lethal if mutation of either gene alone 
is compatible with viability but mutation of both leads to death. 
The inverse corollary would be our principle of multiple cross-
covering growth drive pathways in cancers generally, and in 
breast cancer specifically. We therefore believe a polypharmacy 
approach will be needed for long-term control of breast cancer. 
Adjunctive use of C2AZ during breast cancer treatment is a step 
in that direction. 

The combination of celecoxib and zileuton has been used and 
shown to be effective in inhibiting growth in a variety of animal 
cancer models [130-133]. Note also that no untoward interactions 
were seen when using simultaneous celecoxib and zileuton in 
these cancer models.

C2AZ regimen is not without risks. The unknown risks of combining 
the all C2AZ drugs together are partly mitigated by absence of 
any predictable risk of the combination beyond additive liver 
irritation potential. Patients must take zileuton 600 mg every 
6 hours and 4% develop elevated hepatic transaminases [134]. 
Although these elevations were reversible, this means monitoring 
of liver function will be required.

Two leukotriene receptor blockers are approved for use in humans 
in treating asthma - zafirlukast and montelukast [135-137]. They 
block receptors for cysteinyl leukotrienes LTC4, LTD4, and LTE4 
and so might be substituted for zileuton in jurisdictions where 
zileuton is not marketed or in case of transaminase elevations 
with zileuton. Both zafirlukast and montelukast inhibited in 
vitro viability of breast cancer cell line MDA MB-231, with 
concentrations near those clinically achievable [138].

Conclusion
Given that metastatic breast cancer is incurable (as of Summer 
2020) an adjunctive four drug protocol, C2AZ, was designed to 
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keep the small paucicellular metastases dormant. C2AZ uses the 
documented attributes of four drugs repurposed to treat breast 
cancer. How these three drugs constructively intersect with and 
inhibit the relevant known growth-driving aspects of breast 
cancer was reviewed in this paper. In short, the projected safety 
of the C2AZ regimen, it is eminently worth trying in metastatic 
breast cancer.
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