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Abstract
Background: Myopathies	(MYO)	are	a	group	of	disorders	in	which	the	muscle	fibers	
do	not	function	for	any	one	of	many	reasons,	resulting	in	muscular	weakness	and/
or	muscle	dysfunction.	Neuropathies	(NEURO)	describe	damage	to	the	peripheral	
nervous	 system	which	 transmits	 information	 from	the	brain	and	 spinal	 cord	 to	
every other part of the body. The analysis of Electromyography (EMG) signals 
provides	 important	 information	 to	 aid	 in	 the	 diagnosis	 and	 characterization	 of	
Motor Neuron Disease (MND) and any neuromuscular disorders like myopathy 
and neuropathy.

Methods and findings: In this paper we have proposed a rigorous and robust non-
linear	 technique	 (multifractal	 detrended	fluctuation	analysis,	MF-DFA)	 to	 study	
the	multifractal	 properties	of	 EMG	signals	of	 two	 subjects	with	neuromuscular	
disorders	 (myopathy	 and	 neuropathy).	 We	 observed	 that	 a	 quantitative	
parameter,	multifractal	 width,	 which	 signifies	 the	 degree	 of	 complexity	 of	 the	
signals,	is	significantly	different	for	subjects	of	neuromuscular	disorders	compared	
to	 healthy	 subject.	 Another	 quantity,	 the	 auto-correlation	 exponent	 shows	
significant	differences	in	the	degree	of	auto-correlation	for	different	signals.

Conclusion: These	 quantitative	 parameters,	 multifractal	 width	 and	 auto-
correlation	exponent	can	be	used	as	a	biomarker	for	diagnosis	and	prognosis	of	
both	MYO	and	NEURO,	and	even	for	early	detection	of	MND.	

Keywords: Electromyography;	 Myopathy;	 Neuropathy;	 Non-stationary	 time	
series;	Multifractality;	Multifractal	width;	Auto-correlation	exponent
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Introduction
Motor neurone disease (MND) is a rare but devastating 
illness which leads to progressive paralysis and eventual 
death. Although rare, many patients are both aware and 
fearful of it [1]. MND is a progressive degenerative disease of 
the motor nerve cells of the brain and spinal cord. Neurons 
control muscle movement of all kinds of physical activities. 
When the nerves become inactive, muscles gradually 
weaken leading to paralysis and impaired speaking as well. 
However, it has been observed that the senses, intellect or 
memory remains unaffected in most of the cases. Though 
MND is still incurable, but through proper and continuous 
treatment several symptoms can be controlled.

Myopathy (MYO) is a sign of pathology with widely varying 
etiologies,	including	congenital	or	inherited,	idiopathic,	infectious,	
metabolic,	inflammatory,	endocrine,	and	drug-induced	or	toxic.	
The primary symptom of this disorder is muscle weakness due to 
dysfunction	of	muscle	fiber,	while	it	can	include	other	symptoms	
like	muscle	cramps,	stiffness,	and	spasm	also	[2].

Neuropathy (NEURO), generally known as damage to nerves, 
may be caused either by diseases or trauma to the nerve or as a 
component of systemic illness. 
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An electromyography (EMG) signal is obtained by measurement 
of	 the	 electrical	 activity	 of	 a	 muscle	 during	 contraction,	 and	
reflects	 the	 electrical	 depolarization	 of	 excitable	 muscle	 fiber	
membranes	 that	 create	 electrical	 signals	 called	 muscle	 fibers	
potentials	(MFPs)	[3].	EMG	is	of	two	types:	surface	EMG	(SEMG),	
and intramuscular EMG [4]. SEMG and intramuscular EMG signals 
are recorded by non-invasive electrodes and invasive electrodes, 
respectively.	These	days,	surface-detected	signals	are	preferably	
used	 to	 obtain	 information	 about	 the	 time	 or	 intensity	 of	
superficial	muscle	activation	[5].	The	EMG	signal	has	been	widely	
applied	 in	 fatigue	 studies	 [6-10]	 rehabilitation	 and	 prosthetic	
control [11-15], neurology, as a means in clinical diagnosis 
[16,17],	and	even	in	EMG	augmented	speech	recognition	[18].

Several	 complex	 dynamical	 systems	 found	 in	 nature	 are	
characterized	 by	 a	 set	 of	 nonlinear	 differential	 equations.	
The	 reason	 for	 the	 chaotic	behavior	of	 these	 complex	 systems	
is	 attributed	 to	 nonlinearity	 [19].	 Physiological	 systems	 are	
also	 complex	 systems	 involving	 several	 nonlinearities	 [20,21].	
Myopathies (MYO), Neuropathies (NEURO) and Motor Neuron 
Disease (MND) also have such inherent nonlinear character.

Different	linear	analysis	techniques	have	been	applied	to	describe	
the	 characteristics	 of	 EMG	 signals.	 Time-domain	 features	 have	
been studied by zero crossings and root mean square (RMS) 
[15]	 techniques;	 stochastic	 features	 by	 autoregressive	 model	
coefficients	 [22],	 cepstral	 coefficients	 [11],	 mean	 frequency	
and median frequency (MDN) [6,23] etc. But there are certain 
limitations	with	these	methods	as	realized	by	the	scientists.	Like	
every other system found in nature, EMG signals are also of 
complex	character,	as	 they	are	composed	of	many	subsystems	
which are strongly correlated to each other, but not in a linear 
fashion.	 Conventional	 linear	 techniques	 like	 amplitude,	 root	
mean	square	or	Fourier	analysis	cannot	provide	detail	information	
about these subsystems. The development of nonlinear methods 
has	significantly	helped	in	studying	complex	nonlinear	systems	in	
detail	by	providing	accurate	and	precise	information	about	them	
such	as	in	studying	the	multi-resolution	features	of	EMG	signals,	
wavelet	coefficients	have	high	level	of	accuracy	[12].	Recurrence	
quantification	analysis	(RQA)	provides	additional	information	on	
the underlying motor strategies [24,25], hidden rhythms [26] or 
fatigue	[27,28].	

With the development of nonlinear dynamics it is now very clear 
that	 simple	 nonlinear	 systems	 exhibit	 highly	 complex	 [29-34]	
and	 chaotic	 behavior	 as	 they	 are	 extremely	 sensitive	 to	 initial	
conditions,	 since	any	perturbation,	no	matter	how	minute,	will	
forever	alter	the	future	of	the	systems.	In	complex	signal	there	
exists	self-similarity	phenomenon,	in	that	there	is	a	smaller	scale	
structure	 that	 resembles	 the	 larger	 scale	 structure	 in	 complex	
medical signals such as EMG, EEG (electroencephalography) and 
ECG	 (electrocardiograph)	 signals	 [33].	 Fractals	 exhibit	 this	 self-
similar	property	[35].	The	source	of	SEMG	is	a	set	of	similar	action	
potentials	 originating	 from	 different	 locations	 in	 the	 muscles.	
Because	of	the	self	 -	similarity	of	the	action	potentials	that	are	
the source of the SEMG recordings over a range of scales, SEMG 
is	expected	to	have	fractals	properties.

Fractals refer to	objects	 or	 signal	 patterns	 that	 have	 fractional	
dimension. The measured property of the fractal process is scale 
dependant	and	has	self-similar	variations	in	different	time	scales.	
Fractal	 dimension	 (FD)	 is	 a	 measure	 of	 the	 fractal	 properties	
of	any	structure.	Fractals	 can	be	classified	 into	 two	categories:	
monofractals	 and	multifractals.	Monofractals	 are	 those	whose	
scaling	properties	are	the	same	in	different	regions	of	the	system	
and	multifractals	are	more	complicated	self-similar	objects	that	
consist	of	differently	weighted	fractals	with	different	non-integer	
dimensions.	Thus	the	fundamental	characteristic	of	multifractality	
is	the	scaling	properties	may	be	different	in	different	regions	of	
the systems [36]. 

Several	 researchers	 applied	 different	 nonlinear	 methods	 to	
characterize	 the	 geometry	 and	 fractal	 properties	 of	 the	 EMG	
signals [37-47]. Some authors have directly applied geometrical 
methods	e.g.,	Katz	method	 [48]	and	box-counting	method	 [49]	
on	the	EMG	signal	interference	pattern	to	acquire	an	estimate	of	
the fractal dimension.

Other nonlinear methods such as nonlinear entropy analysis and 
fractal analysis have been proposed to analyze SEMG signals for 
extracting	 information	that	can	detect	 the	changes	 in	different	
muscle	statuses.	Zhao	Jing-Dong	et	al.	extracted	sample	entropy	
and	wavelet	transform	coefficients	from	three	channels	of	SEMG	
signals	for	classifying	six	fingers	movements	[50].	Naik	et	al.	used	
the	fractal	dimension	features	for	identifying	finger	movements	
[51]. In a study Dang et al. showed EMG to be a powerful tool 
for	 investigating	 the	 relationship	 between	 jaw	 imbalance	 and	
the loss of arm strength with Higuchi Fractal dimension (HFD) 
analysis	 [52].	 Zhang	 et	 al.	 observed,	 though	 the	 traditional	
time-domain	and	frequency-domain	analyzing	methods	used	in	
EMG	pattern	 recognition	have	a	 satisfactory	capability	 to	 track	
muscular	 changes,	 but	 as	 far	 as	 detection	 of	 critical	 features	
of SEMG signals during transient human movements are 
concerned, nonlinear methods like nonlinear entropy analysis 
or	 fractal	 analysis	 are	 more	 reliable	 than	 the	 conventional	
linear	analysis	methods	 [53].	Naeem	et	al.	used	a	combination	
of	 linear	 and	 nonlinear	 techniques	 to	 estimate	 their	 ability	 to	
recognize uterine EMG records of term and preterm deliveries 
using	artificial	 neural	network	 [54].	 In	 another	work	Patidar	et	
al.	 applied	 the	 back	 propagation	 neural	 network	 classifier	 for	
classification	of	myopathy	patients	and	healthy	subjects	with	the	
help	of	EMG	signal	[3].	Lei	and	Meng,	investigated	the	stochastic,	
deterministic	and	chaotic	behavior	of	SEMG	signals	with	several	
nonlinear techniques such as surrogate data method, VWK model 
method,	chaotic	analysis	method,	symplectic	geometry	method	
and fractal analysis method. They observed the necessity of 
multifractal	 analysis,	 as	 it	 was	 found	 very	 difficult	 to	 describe	
SEMG using single fractal dimension [55]. Way back in 2007 Gang 
et al. [56] observed SEMG signals from biceps brachii on the 
skin	 surface	of	 right	 forearm	of	 human	 subjects’	 characterized	
multifractality	 during	 a	 static	 contraction	 applying	 multifractal	
analysis	 technique	as	an	 indicator	 for	assessing	muscle	fatigue.	
Several	 other	 authors	 have	 also	 extensively	 analyzed	 the	
classical (mono-) fractal aspects [57-61] in the domain of force of 
contraction	of	different	muscles [62].
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In this paper we have proposed  detrended 
 analysis (MF-DFA) method to study the  
 of EMG signals of three human subjects of which one 

contains healthy EMG data and the other two MYO and NEURO 
data  We may  that we do not have access 
to any other data of EMG  series.

Kantelhardt et al. introduced  detrended  
analysis (MF-DFA) as a  of the standard DFA [63]. 
For the study of  scaling behavior of various non-

  series, MF-DFA has been applied quite successfully 
in   of science and engineering [64-70]. MF-DFA is a 
nonlinear analysis technique, the  of which on a given 
set of data provides  about any evidence of self-
similarity or persistence in the series [71]. MF-DFA allows a global 

 of  behavior, while the WTMM method is 
suited for the local  of the scaling  of 
signals. Moreover the MFDFA does not require a big  in 
programming but provides reliable results [72].

We obtained the data from 
database/emgdb/

Data were collected with a Medelec Synergy N2 EMG Monitoring 
System (Oxford Instruments Medical, Old Woking, United 
Kingdom). EMG data from: 1) A 44-year-old man without history 
of neuromuscular disease; 2) A 57-year-old man with myopathy 
due to longstanding history of  treated  
with steroids and low-dose methotrexate; and 3) A 62-year-old 
man with chronic low back pain and neuropathy due to a right 
L5 radiculopathy. The data were recorded at 50 KHz and then 
down-sampled to 4 KHz. During the recording process two analog 

 were used: A 20 Hz high-pass  and a 5K Hz low-pass 
 The data were further divided into  equal sets for each 

subject.

Method of analysis
We have performed a  analysis of the EMG recordings 
of three human subjects, one healthy, one with myopathy 
and one with neuropathy  using methodology of 
Kantelhardt et al. [63].

Let us consider x(i) for i =1, ............, N, be a   
series of length N. The mean of the above series is given by

( )
1

1 N

ave
i

i
N =

Χ = Χ∑                        (1)

Assuming x(i) as the increments of a random walk process around 
the average, the trajectory can be obtained by  of the 
signal.

( ) ( )1

i
avek

Y i k
=

= Χ −Χ  ∑  for i =1....... N (2)

The level of measurement noise present in experimental records 
and the  data are also reduced by the  thereby 
dividing the integrated  series into Ns non-overlapping bins, 
where Ns = int(N/S) and where s is the length of the bin. As N is 
not a  of s, a small  of the series is  at the end. 

Again, to include that  part, the  process is repeated 
in a similar way  from the opposite end, leaving a small 

 at the beginning. Hence, 2Ns bins are obtained altogether 
and for each bin least-square  of the series is done followed by 

 of the variance.
( ) ( ) ( ){ }22

1

1, v 1
s

v
i

F s Y v s i y i
s =

= − + −  ∑

For each bin ν, ν =1 ........ Ns and

( ) ( ) ( ){ }2
2

1

1, v s
S vi

F s Y N v N s i y i
s =

= − − + −  ∑                     (4)

For ν = Ns + 1........, 2 Ns, where  is the least square  
value in the bin ν. In our research work we have performed a 
least square linear  (MFDFA -1). The study can also be extended 
to higher orders by   cubic, or higher order 
polynomials.

The qth order   Fq(s) is obtained  averaging 
over 2 Ns, bins,

( ) ( )
1

2 2 2
0 1

1~ exp ,2
S

qqN
s V

F s N In F s v
=

  ≡    
∑                                                        (5)

where q is an index which can take all possible values except 
zero, as the factor 1/q becomes  with zero value. The 
procedure can be repeated by varying the value of s. With the 
increase in the value of s Fq (s) , increases and for the long range 
power correlated series Fq (s) shows power law behavior,

( ) ( )h q
qF s sα

If such a scaling exists, In Fq will depend linearly on s with slope 
h(q). In general, the exponent h(q) depends on q. For a  

 series, h(2) is  with the Hurst exponent H. h(q) is 
said to be the generalised exponent. The value of h(0) cannot 
be obtained directly, because Fq blows up at q = 0. Fq cannot be 
obtained by normal averaging procedure; instead a logarithmic 
averaging procedure is applied.

                                                         (6)

A monofractal  series is characterized by unique h(q) for 
all values of q. If small and large  scale  
then h(q) will depend on q, or in other words the  series is 

 Kantelhardt et al. have explained that the values of 
h(q) for q < 0 will be larger than that for q > 0 [73].

The generalized Hurst exponent h(q) of MFDFA is related to the 
classical scaling exponent τ(q) by the 

( ) ( ) 1q qh qτ = −                          (7)

a monofractal series with long range  is characterized 
by linearly dependent q- order exponent τ(q) with a single Hurst 
exponent H.  signals have  Hursts exponent 
and τ(q) depends nonlinearly on q [74]. The singularity spectrum 
f(α) is related to τ(q) by Legendre transform [75].

 ( ) ( )h q qh qα = +                                      (8)

 ( ) ( ) 1f q h qα α= − +                                     (9)

In general, the singularity spectrum  the long range 
 property of the  series [76]. The  

spectrum is capable of providing  about the  

( ) ( ){ } ( )2 02
0 1

1 exp ,4
SN h

s V
F s N In F s v s

=
 ≡  ∑ ~
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lnFq vs.  lns	for	a	particular	set	of	EMG	signal	of	healthy	
subject.

Figure 1

importance	 of	 various	 fractal	 exponents	 in	 the	 time	 series,	
e.g.,	 the	width	of	 the	spectrum	denotes	range	of	exponents.	A	
quantitative	characterization	of	the	spectra	can	be	done	by	least-
squares	fitting	it	to	quadratic	function	[77]	around	the	position	
of	maximum	α0, 

( ) ( ) ( )2
0 0f A cα α α α α= − + − +                      (10)

where	 C	 is	 a	 additive	 constant,	 C	 =	 f(α0)	 =1;	 B	 indicates	 the	
asymmetry of the spectrum, and zero for a symmetric spectrum. 
The	width	of	the	spectrum	can	be	obtained	by	extrapolating	the	
fitted	curve	to	zero.	Width	W	is	defined	as	W	=	α1	–	α2	with	f(α1) 
=	f(α2)	=	0.	It	has	been	proposed	by	some	workers	[78]	that	the	
width	of	the	multifractal	spectrum	is	a	measure	of	the	degree	of	
multifractality.	Singularity	strength	or	Holder	exponent	α	and	the	
dimension	of	subset	series	f(α)	can	be	obtained	from	reln.9	and	
10. For a monofractal series, h(q) is independent of q. Hence from 
relation	9	and	10	it	is	evident	that	there	will	be	a	unique	value	of	
α	and	f(),	the	value	of	α	being	the	generalized	Hurst	exponent	H	
and	the	value	of	f(α)	being	1.	Hence	the	width	of	the	spectrum	
will be zero for a monofractal series. The more the width, the 
more	multifractal	is	the	spectrum.

The	 autocorrelation	 exponent	 γ	 can	 be	 estimated	 from	 the	
relation	given	below	[79,80]:

( )( )2 2 2h qγ = − =                              (11)

For	uncorrelated	or	short-range	correlated	data,	h(2)	is	expected	
to	have	a	value	0.5	while	a	value	greater	than	0.5	is	expected	for	
long-range	correlations.	Therefore	for	uncorrelated	data,	γ	has	a	
value 1 and the lower the value the more correlated is the data.

Superiority of MFDFA over other conventional 
methods
A	 time	 series	 containing	 apparent	 irregularities	 can	 be	 best	
described with nonlinear scaling analysis. MFDFA, in comparison 
with	 the	 conventional	 methods	 such	 as	 Fourier	 analysis,	
Detrended	 Fluctuation	 Analysis	 (DFA),	 Detrended	 Moving	
Average	 (DMA),	 Backward	 Moving	 Average	 (BMA),	 Modified	
Detrended	 Fluctuation	 Analysis	 (MDFA),	 Continuous	 DFA	
(CDFA), Wavelet Analysis etc., has achieved the highest degree 
of precision. It is a very rigorous and robust technique and can 
be	 implemented	 with	 lesser	 effort	 in	 computer	 programming	
as	compared	to	conventional	DFA,	since	it	does	not	require	the	
modulus	maxima	 procedure.	Many	 researchers	 in	 this	 domain	
have	recommended	MFDFA	due	to	its	better	performance	than	
other	conventional	methods	 in	the	analysis	of	multifractality	 in	
both	stationary	as	well	as	non-stationary	time	series	[63,81,82].	
Oswiecimka et al. have established the superiority of MFDFA 
over other techniques, especially over the most popular one, 
the	Wavelet	 Transform	Modulus	Maxima	 (WTMM)	 in	 terms	of	
reliable	applications	[83].

Certain	limitations	have	also	been	identified	in	MFDFA	method.	
Mainly, where a large amount of data is missing or removed 
due	 to	 artifacts,	 the	 problem	 may	 arise	 in	 the	 identification	
of	 correlation	properties	 of	 real	 data.	However,	Ma	 et	 al.	 [84]	
observed that the	major	findings	are	not	significantly	disturbed	
even with loss of data.

Results
The	non-stationary	times	series	of	EMG	data	of	healthy,	myopathy	
and	neuropathy	respectively	recorded	 in	three	human	subjects	
are analyzed following the method described above. 

Multifractal	 analysis	was	employed	 for	 each	 set.	 The	data	was	
transformed to obtain the integrated signal. This process is 
effective	in	reducing	noise	in	the	data.	The	integrated	time	series	
was divided to Ns bins, where Ns	=	int(N/s),	N	is	the	length	of	the	
series. The qth	order	fluctuation	function	Fq(s)	for	q	=	-10	to	+10	
in steps of 1 was determined. 

Figure 1	depicts	the	linear	dependence	of	lnFq	on	lns	suggesting	
scaling	 behavior	 for	 the	 healthy	 subjects.	 Figure 2 and Figure 
3 also depict the same scaling behavior for myopathy and 
neuropathy	patients	respectively.

The	slope	of	linear	fit	to	ln	Fq(s)	versus	lns	plots	gives	the	values	
of	 h(q).	 The	 values	 of	 τ(q)	 were	 also	 determined.	 As	we	 have	
mentioned	earlier,	nonlinear	dependence	of	on	(q)	on	q	suggests	
multifractality,	 whereas	 for	 a	 monofractal	 series	 τ(q)	 depends	
linearly	on	q.	The	values	of	h(q)	and	τ(q)	of	all	the	EMG	signals	
are depicted in Figures 4 and 5	respectively.

lnFq vs.  lns	for	a	particular	set	of	EMG	signal	of	myopathy	
patient.

Figure 2
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q, or in other words,	the	degree	of	multifractality	is	different	in	
different	cases.	

Table 1 is formed with the values obtained from Figure 4 where 
we	can	see	that	for	q	=	2	the	generalized	Hurst	exponent	h(q)	of	
all	the	EMG	signals	of	healthy	and	myopathy	subjects	are	greater	
than	0.5	which	means	that	long	range	correlation	and	persistent	
properties	exist	in	all	the	sets.	For	neuropathy,	h(q)	is	less	than	
0.5,	which	indicates	the	existence	of	anti-persistent	properties	in	
all the sets.

A	 quantitative	 determination	 of	 the	 degree	 of	 multifractality	
can	also	be	done	from	the	multifractal	spectrum.	Ashkenazy	et	
al.	have	associated	the	width	of	the	multifractal	spectrum	(f(α)	
versus	α)	with	the	degree	of	multifractality	[78].	Figure 6 shows 
the	multifractal	spectrum	of	healthy,	myopathy	and	neuropathy	
EMG signals.

In Table 2	the	values	of	multifractal	width	w	obtained	by	fitting	
the	multifractal	 spectrums	 to	 Eq.	 (8)	 are	 listed,	where	we	 can	
observe	that	the	multifractal	widths	in	five	sets	of	all	the	three	
healthy,	 myopathy	 and	 neuropathy	 EMG	 signals	 are	 different	
ranging from as low as 1.144 to as high as 1.257, from 1.507 
to	 1.605	 and	 from	 1.655	 to	 1.991	 respectively	 giving	 a	 clear	
indication	 of	 increasing	 complexity	 from	 healthy	 subject	 to	
neuropathy	subject.

From Table 3	we	can	observe	that	the	value	of	auto-correlation	
exponent	 γ	 for	 set	 5	 of	 the	 healthy	 person	 is	 0.035	 which	
indicates	a	high	degree	of	correlation	as	we	know	lower	the	value	
of		higher	is	the	degree	of	correlation.	Whereas	for	the	same	set,	
for	myopathy	patient	γ	is	quite	high	with	a	close	approach	to	1,	

lnFq  vs. lns	 for	 a	 particular	 set	 of	 EMG	 signal	 of	
neuropathy	patient.

Figure 3

h(q)	vs.	q	for	a	particular	set	of	EMG	signals	of	healthy,	
myopathy and neuropathy.

Figure 4

τ(q)	vs.	q	for	a	particular	set	of	EMG	signals	of	healthy,	
myopathy and neuropathy.

Figure 5

The	nonlinear	dependence	of	τ(q)	on	q	and	the	dependence	of	
h(q)	on	q	gives	evidence	for	the	multifractality	of	the	EMG	signals.	
Figure 4 also depicts that the degree of dependence of h(q) on 

Order q
Generalized Hurst Exponent h(q)

Healthy Myopathy Neuropathy
-10 1.67 1.71 1.51
-9 1.66 1.70 1.50
-8 1.65 1.69 1.49
-7 1.63 1.67 1.47
-6 1.60 1.65 1.44
-5 1.57 1.61 1.41
-4 1.52 1.57 1.37
-3 1.45 1.50 1.32
-2 1.36 1.39 1.24
-1 1.26 1.18 1.12
0 1.09 0.84 0.68
1 1.01 0.68 0.54
2 0.93 0.57 0.36
3 0.88 0.51 0.29
4 0.85 0.46 0.26
5 0.82 0.42 0.25
6 0.80 0.39 0.23
7 0.78 0.36 0.22
8 0.77 0.34 0.21
9 0.75 0.33 0.20

10 0.75 0.32 0.19

Table 1	 Values	of	h(q)	 corresponding	 to	q	 for	 a	particular	 set	of	 EMG	
signals	of	healthy,	myopathy	and	neuropathy	subjects.
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f(α)	vs.	α	for	a	particular	set	of	EMG	signals	of	healthy,	
myopathy and neuropathy.

Figure 6

Set
Multifractal Width (w)

Healthy Myopathy Neuropathy
1 1.161 ± 0.042 1.605 ± 0.078 1.655 ± 0.140
2 1.146 ± 0.041 1.583 ± 0.077 1.848 ± 0.103
3 1.257 ± 0.026 1.598 ± 0.087 1.855 ± 0.105
4 1.230 ± 0.050 1.507 ± 0.078 1.991 ± 0.078
5 1.144 ± 0.041 1.598 ± 0.073 1.813 ± 0.082

Table 2	 Values	 of	 w	 for	 all	 the	 five	 sets	 of	 EMG	 signals	 of	 healthy,	
myopathy	and	neuropathy	subjects.

Set
Autocorrelation Exponent (γ)

Healthy Myopathy Neuropathy
1 0.132 ± 0.004 0.852 ± 0.010 1.288 ± 0.007
2 0.075 ± 0.006 0.842 ± 0.011 1.462 ± 0.010
3 0.069 ± 0.005 0.793 ± 0.009 1.442 ± 0.009
4 0.262 ± 0.004 0.73 ± 0.010 1.459 ± 0.009
5 0.035 ± 0.005 0.763 ± 0.010 1.431 ± 0.009

Table 3	Values	of	γ	for	all	the	five	sets	of	EMG	signals	of	healthy,	myopathy	
and	neuropathy	subjects.

indicating	a	very	less	autocorrelation	and	for	neuropathy	patient	
it	is	greater	than	1	which	implies	there	is	no	correlation	at	all.

Discussion 
Little	 work	 has	 been	 done	 on	 the	 analysis	 of	 EMG	 data	 with	
nonlinear techniques. Gang et al. reported a work [56] which 
aimed	 to	 study	muscle	 fatigue	 during	 static	 contraction.	Using	
a	 multifractal	 method	 developed	 by	 Chhabra	 and	 Jensen	 [85]	
they	showed	multifractility	of	SEMG	signals.	They	observed	the	
area	of	the	multifractal	spectrum	of	the	SEMG	signals	to	increase	
significantly	 during	 muscle	 fatigue.	 Thus	 they	 concluded	 that	
the	area	of	the	multifractal	spectrum	could	then	be	used	as	an	
assessor	of	muscle	fatigue	which	is	more	sensitive	than	the	single	
characteristic	frequency	such	as	the	median	frequency	(MDF)	or	
mean frequency (MNF) of the power spectral density (PSD) which 
was	a	then	popular	method	of	estimating	fatigue	[86,87].	They	
also	opined	that	the	large	area	of	SEMG	multifractal	singularity	
spectrum	reflects	the	strengthened	activity	of	the	nervous	system	

of	the	body	in	the	process	of	muscle	fatigue	[86].	In	another	study	
Talebinejad	et	al.	[88]	used	a	bi-phase	power	spectrum	method	
(BPSM) for fractal analysis of SEMG signals and also included 
an	algorithm	for	extraction	of	fractal	indicators	(FIs).	BSPM	was	
evaluated	for	force	and	joint	angle	and	the	changes	that	reflect	
in EMG signals were demonstrated with the help of FIs. They 
also	compared	BSPM	with	geometrical	 techniques	and	the	1/fα 
approach for fractal analysis of electromyography signals and 
concluded	that	BPSM	provides	reliable	information,	as	it	consists	
of	 components	 which	 are	 capable	 of	 sensing	 force	 and	 joint	
angle	effects	separately,	which	could	be	used	as	complementary	
information	for	confounded	conventional	measures	[88].

However as elaborated earlier Oswiecimka et al. have established 
the superiority of MFDFA over other techniques, especially 
the	 Wavelet	 Transform	 Modulus	 Maxima	 (WTMM)	 in	 terms	
of	 reliable	 applications	 [83].	 Compared	 to	 other	 conventional	
methods MFDFA has reached the highest precision in scaling 
analysis. Thus it is considered a rigorous and robust tool for 
assessing	 correlation	 in	 nonlinear	 time	 series.	 Some	 other	
authors	too	have	advocated	the	better	performance	of	MFDFA	
than	 other	 multifractal	 analyses	 methods	 [63,81,82]	 as	 it	 can	
detect	multifractality	in	both	stationary	as	well	as	non-stationary	
time	series.

Conclusion
Using	 MF-DFA	 in	 our	 work	 we	 have	 been	 able	 to	 distinguish	
the	EMG	signals	of	healthy,	myopathy	and	neuropathy	subjects	
effectively	 with	 the	 help	 of	 two	 parameters	 the	 multifractal	
width	 (w)	 and	 auto-correlation	 exponent	 (γ).	 Not	 only	 we	
observed	 different	 degree	 of	multifractility	 of	 the	 EMG	 signals	
of	healthy,	myopathy	and	neuropathy	subjects	but	we	have	also	
observed	the	significant	variation	 in	degree	of	auto-correlation	
for	all	the	three	subjects	where	subject	with	neuropathy	shows	
no	correlation	at	all.	 Thus	 the	present	 study	proposes	a	novel,	
rigorous method of assessment of myopathy and neuropathy 
using	EMG	time	series	from	a	different	perspective	and	any	EMG	
data available may be analyzed using the method for diagnosis 
and prognosis of myopathy and neuropathy and even early 
detection	of	motor	neuron	disease.
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