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Neuropathy and Motor Neuron Disease

Abstract
Background: Myopathies (MYO) are a group of disorders in which the muscle fibers 
do not function for any one of many reasons, resulting in muscular weakness and/
or muscle dysfunction. Neuropathies (NEURO) describe damage to the peripheral 
nervous system which transmits information from the brain and spinal cord to 
every other part of the body. The analysis of Electromyography (EMG) signals 
provides important information to aid in the diagnosis and characterization of 
Motor Neuron Disease (MND) and any neuromuscular disorders like myopathy 
and neuropathy.

Methods and findings: In this paper we have proposed a rigorous and robust non-
linear technique (multifractal detrended fluctuation analysis, MF-DFA) to study 
the multifractal properties of EMG signals of two subjects with neuromuscular 
disorders (myopathy and neuropathy). We observed that a quantitative 
parameter, multifractal width, which signifies the degree of complexity of the 
signals, is significantly different for subjects of neuromuscular disorders compared 
to healthy subject. Another quantity, the auto-correlation exponent shows 
significant differences in the degree of auto-correlation for different signals.

Conclusion: These quantitative parameters, multifractal width and auto-
correlation exponent can be used as a biomarker for diagnosis and prognosis of 
both MYO and NEURO, and even for early detection of MND. 

Keywords: Electromyography; Myopathy; Neuropathy; Non-stationary time 
series; Multifractality; Multifractal width; Auto-correlation exponent
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Introduction
Motor neurone disease (MND) is a rare but devastating 
illness which leads to progressive paralysis and eventual 
death. Although rare, many patients are both aware and 
fearful of it [1]. MND is a progressive degenerative disease of 
the motor nerve cells of the brain and spinal cord. Neurons 
control muscle movement of all kinds of physical activities. 
When the nerves become inactive, muscles gradually 
weaken leading to paralysis and impaired speaking as well. 
However, it has been observed that the senses, intellect or 
memory remains unaffected in most of the cases. Though 
MND is still incurable, but through proper and continuous 
treatment several symptoms can be controlled.

Myopathy (MYO) is a sign of pathology with widely varying 
etiologies, including congenital or inherited, idiopathic, infectious, 
metabolic, inflammatory, endocrine, and drug-induced or toxic. 
The primary symptom of this disorder is muscle weakness due to 
dysfunction of muscle fiber, while it can include other symptoms 
like muscle cramps, stiffness, and spasm also [2].

Neuropathy (NEURO), generally known as damage to nerves, 
may be caused either by diseases or trauma to the nerve or as a 
component of systemic illness. 
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An electromyography (EMG) signal is obtained by measurement 
of the electrical activity of a muscle during contraction, and 
reflects the electrical depolarization of excitable muscle fiber 
membranes that create electrical signals called muscle fibers 
potentials (MFPs) [3]. EMG is of two types: surface EMG (SEMG), 
and intramuscular EMG [4]. SEMG and intramuscular EMG signals 
are recorded by non-invasive electrodes and invasive electrodes, 
respectively. These days, surface-detected signals are preferably 
used to obtain information about the time or intensity of 
superficial muscle activation [5]. The EMG signal has been widely 
applied in fatigue studies [6-10] rehabilitation and prosthetic 
control [11-15], neurology, as a means in clinical diagnosis 
[16,17], and even in EMG augmented speech recognition [18].

Several complex dynamical systems found in nature are 
characterized by a set of nonlinear differential equations. 
The reason for the chaotic behavior of these complex systems 
is attributed to nonlinearity [19]. Physiological systems are 
also complex systems involving several nonlinearities [20,21]. 
Myopathies (MYO), Neuropathies (NEURO) and Motor Neuron 
Disease (MND) also have such inherent nonlinear character.

Different linear analysis techniques have been applied to describe 
the characteristics of EMG signals. Time-domain features have 
been studied by zero crossings and root mean square (RMS) 
[15] techniques; stochastic features by autoregressive model 
coefficients [22], cepstral coefficients [11], mean frequency 
and median frequency (MDN) [6,23] etc. But there are certain 
limitations with these methods as realized by the scientists. Like 
every other system found in nature, EMG signals are also of 
complex character, as they are composed of many subsystems 
which are strongly correlated to each other, but not in a linear 
fashion. Conventional linear techniques like amplitude, root 
mean square or Fourier analysis cannot provide detail information 
about these subsystems. The development of nonlinear methods 
has significantly helped in studying complex nonlinear systems in 
detail by providing accurate and precise information about them 
such as in studying the multi-resolution features of EMG signals, 
wavelet coefficients have high level of accuracy [12]. Recurrence 
quantification analysis (RQA) provides additional information on 
the underlying motor strategies [24,25], hidden rhythms [26] or 
fatigue [27,28]. 

With the development of nonlinear dynamics it is now very clear 
that simple nonlinear systems exhibit highly complex [29-34] 
and chaotic behavior as they are extremely sensitive to initial 
conditions, since any perturbation, no matter how minute, will 
forever alter the future of the systems. In complex signal there 
exists self-similarity phenomenon, in that there is a smaller scale 
structure that resembles the larger scale structure in complex 
medical signals such as EMG, EEG (electroencephalography) and 
ECG (electrocardiograph) signals [33]. Fractals exhibit this self-
similar property [35]. The source of SEMG is a set of similar action 
potentials originating from different locations in the muscles. 
Because of the self - similarity of the action potentials that are 
the source of the SEMG recordings over a range of scales, SEMG 
is expected to have fractals properties.

Fractals refer to objects or signal patterns that have fractional 
dimension. The measured property of the fractal process is scale 
dependant and has self-similar variations in different time scales. 
Fractal dimension (FD) is a measure of the fractal properties 
of any structure. Fractals can be classified into two categories: 
monofractals and multifractals. Monofractals are those whose 
scaling properties are the same in different regions of the system 
and multifractals are more complicated self-similar objects that 
consist of differently weighted fractals with different non-integer 
dimensions. Thus the fundamental characteristic of multifractality 
is the scaling properties may be different in different regions of 
the systems [36]. 

Several researchers applied different nonlinear methods to 
characterize the geometry and fractal properties of the EMG 
signals [37-47]. Some authors have directly applied geometrical 
methods e.g., Katz method [48] and box-counting method [49] 
on the EMG signal interference pattern to acquire an estimate of 
the fractal dimension.

Other nonlinear methods such as nonlinear entropy analysis and 
fractal analysis have been proposed to analyze SEMG signals for 
extracting information that can detect the changes in different 
muscle statuses. Zhao Jing-Dong et al. extracted sample entropy 
and wavelet transform coefficients from three channels of SEMG 
signals for classifying six fingers movements [50]. Naik et al. used 
the fractal dimension features for identifying finger movements 
[51]. In a study Dang et al. showed EMG to be a powerful tool 
for investigating the relationship between jaw imbalance and 
the loss of arm strength with Higuchi Fractal dimension (HFD) 
analysis [52]. Zhang et al. observed, though the traditional 
time-domain and frequency-domain analyzing methods used in 
EMG pattern recognition have a satisfactory capability to track 
muscular changes, but as far as detection of critical features 
of SEMG signals during transient human movements are 
concerned, nonlinear methods like nonlinear entropy analysis 
or fractal analysis are more reliable than the conventional 
linear analysis methods [53]. Naeem et al. used a combination 
of linear and nonlinear techniques to estimate their ability to 
recognize uterine EMG records of term and preterm deliveries 
using artificial neural network [54]. In another work Patidar et 
al. applied the back propagation neural network classifier for 
classification of myopathy patients and healthy subjects with the 
help of EMG signal [3]. Lei and Meng, investigated the stochastic, 
deterministic and chaotic behavior of SEMG signals with several 
nonlinear techniques such as surrogate data method, VWK model 
method, chaotic analysis method, symplectic geometry method 
and fractal analysis method. They observed the necessity of 
multifractal analysis, as it was found very difficult to describe 
SEMG using single fractal dimension [55]. Way back in 2007 Gang 
et al. [56] observed SEMG signals from biceps brachii on the 
skin surface of right forearm of human subjects’ characterized 
multifractality during a static contraction applying multifractal 
analysis technique as an indicator for assessing muscle fatigue. 
Several other authors have also extensively analyzed the 
classical (mono-) fractal aspects [57-61] in the domain of force of 
contraction of different muscles [62].
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In this paper we have proposed  detrended 
 analysis (MF-DFA) method to study the  
 of EMG signals of three human subjects of which one 

contains healthy EMG data and the other two MYO and NEURO 
data  We may  that we do not have access 
to any other data of EMG  series.

Kantelhardt et al. introduced  detrended  
analysis (MF-DFA) as a  of the standard DFA [63]. 
For the study of  scaling behavior of various non-

  series, MF-DFA has been applied quite successfully 
in   of science and engineering [64-70]. MF-DFA is a 
nonlinear analysis technique, the  of which on a given 
set of data provides  about any evidence of self-
similarity or persistence in the series [71]. MF-DFA allows a global 

 of  behavior, while the WTMM method is 
suited for the local  of the scaling  of 
signals. Moreover the MFDFA does not require a big  in 
programming but provides reliable results [72].

We obtained the data from 
database/emgdb/

Data were collected with a Medelec Synergy N2 EMG Monitoring 
System (Oxford Instruments Medical, Old Woking, United 
Kingdom). EMG data from: 1) A 44-year-old man without history 
of neuromuscular disease; 2) A 57-year-old man with myopathy 
due to longstanding history of  treated  
with steroids and low-dose methotrexate; and 3) A 62-year-old 
man with chronic low back pain and neuropathy due to a right 
L5 radiculopathy. The data were recorded at 50 KHz and then 
down-sampled to 4 KHz. During the recording process two analog 

 were used: A 20 Hz high-pass  and a 5K Hz low-pass 
 The data were further divided into  equal sets for each 

subject.

Method of analysis
We have performed a  analysis of the EMG recordings 
of three human subjects, one healthy, one with myopathy 
and one with neuropathy  using methodology of 
Kantelhardt et al. [63].

Let us consider x(i) for i =1, ............, N, be a   
series of length N. The mean of the above series is given by

( )
1

1 N

ave
i

i
N =

Χ = Χ∑                        (1)

Assuming x(i) as the increments of a random walk process around 
the average, the trajectory can be obtained by  of the 
signal.

( ) ( )1

i
avek

Y i k
=

= Χ −Χ  ∑  for i =1....... N (2)

The level of measurement noise present in experimental records 
and the  data are also reduced by the  thereby 
dividing the integrated  series into Ns non-overlapping bins, 
where Ns = int(N/S) and where s is the length of the bin. As N is 
not a  of s, a small  of the series is  at the end. 

Again, to include that  part, the  process is repeated 
in a similar way  from the opposite end, leaving a small 

 at the beginning. Hence, 2Ns bins are obtained altogether 
and for each bin least-square  of the series is done followed by 

 of the variance.
( ) ( ) ( ){ }22
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For ν = Ns + 1........, 2 Ns, where  is the least square  
value in the bin ν. In our research work we have performed a 
least square linear  (MFDFA -1). The study can also be extended 
to higher orders by   cubic, or higher order 
polynomials.

The qth order   Fq(s) is obtained  averaging 
over 2 Ns, bins,

( ) ( )
1

2 2 2
0 1

1~ exp ,2
S

qqN
s V

F s N In F s v
=

  ≡    
∑                                                        (5)

where q is an index which can take all possible values except 
zero, as the factor 1/q becomes  with zero value. The 
procedure can be repeated by varying the value of s. With the 
increase in the value of s Fq (s) , increases and for the long range 
power correlated series Fq (s) shows power law behavior,

( ) ( )h q
qF s sα

If such a scaling exists, In Fq will depend linearly on s with slope 
h(q). In general, the exponent h(q) depends on q. For a  

 series, h(2) is  with the Hurst exponent H. h(q) is 
said to be the generalised exponent. The value of h(0) cannot 
be obtained directly, because Fq blows up at q = 0. Fq cannot be 
obtained by normal averaging procedure; instead a logarithmic 
averaging procedure is applied.

                                                         (6)

A monofractal  series is characterized by unique h(q) for 
all values of q. If small and large  scale  
then h(q) will depend on q, or in other words the  series is 

 Kantelhardt et al. have explained that the values of 
h(q) for q < 0 will be larger than that for q > 0 [73].

The generalized Hurst exponent h(q) of MFDFA is related to the 
classical scaling exponent τ(q) by the 

( ) ( ) 1q qh qτ = −                          (7)

a monofractal series with long range  is characterized 
by linearly dependent q- order exponent τ(q) with a single Hurst 
exponent H.  signals have  Hursts exponent 
and τ(q) depends nonlinearly on q [74]. The singularity spectrum 
f(α) is related to τ(q) by Legendre transform [75].

 ( ) ( )h q qh qα = +                                      (8)

 ( ) ( ) 1f q h qα α= − +                                     (9)

In general, the singularity spectrum  the long range 
 property of the  series [76]. The  

spectrum is capable of providing  about the  

( ) ( ){ } ( )2 02
0 1

1 exp ,4
SN h

s V
F s N In F s v s

=
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lnFq vs.  lns for a particular set of EMG signal of healthy 
subject.

Figure 1

importance of various fractal exponents in the time series, 
e.g., the width of the spectrum denotes range of exponents. A 
quantitative characterization of the spectra can be done by least-
squares fitting it to quadratic function [77] around the position 
of maximum α0, 

( ) ( ) ( )2
0 0f A cα α α α α= − + − +     		                 (10)

where C is a additive constant, C = f(α0) =1; B indicates the 
asymmetry of the spectrum, and zero for a symmetric spectrum. 
The width of the spectrum can be obtained by extrapolating the 
fitted curve to zero. Width W is defined as W = α1 – α2 with f(α1) 
= f(α2) = 0. It has been proposed by some workers [78] that the 
width of the multifractal spectrum is a measure of the degree of 
multifractality. Singularity strength or Holder exponent α and the 
dimension of subset series f(α) can be obtained from reln.9 and 
10. For a monofractal series, h(q) is independent of q. Hence from 
relation 9 and 10 it is evident that there will be a unique value of 
α and f(), the value of α being the generalized Hurst exponent H 
and the value of f(α) being 1. Hence the width of the spectrum 
will be zero for a monofractal series. The more the width, the 
more multifractal is the spectrum.

The autocorrelation exponent γ can be estimated from the 
relation given below [79,80]:

( )( )2 2 2h qγ = − =      			      	                  (11)

For uncorrelated or short-range correlated data, h(2) is expected 
to have a value 0.5 while a value greater than 0.5 is expected for 
long-range correlations. Therefore for uncorrelated data, γ has a 
value 1 and the lower the value the more correlated is the data.

Superiority of MFDFA over other conventional 
methods
A time series containing apparent irregularities can be best 
described with nonlinear scaling analysis. MFDFA, in comparison 
with the conventional methods such as Fourier analysis, 
Detrended Fluctuation Analysis (DFA), Detrended Moving 
Average (DMA), Backward Moving Average (BMA), Modified 
Detrended Fluctuation Analysis (MDFA), Continuous DFA 
(CDFA), Wavelet Analysis etc., has achieved the highest degree 
of precision. It is a very rigorous and robust technique and can 
be implemented with lesser effort in computer programming 
as compared to conventional DFA, since it does not require the 
modulus maxima procedure. Many researchers in this domain 
have recommended MFDFA due to its better performance than 
other conventional methods in the analysis of multifractality in 
both stationary as well as non-stationary time series [63,81,82]. 
Oswiecimka et al. have established the superiority of MFDFA 
over other techniques, especially over the most popular one, 
the Wavelet Transform Modulus Maxima (WTMM) in terms of 
reliable applications [83].

Certain limitations have also been identified in MFDFA method. 
Mainly, where a large amount of data is missing or removed 
due to artifacts, the problem may arise in the identification 
of correlation properties of real data. However, Ma et al. [84] 
observed that the major findings are not significantly disturbed 
even with loss of data.

Results
The non-stationary times series of EMG data of healthy, myopathy 
and neuropathy respectively recorded in three human subjects 
are analyzed following the method described above. 

Multifractal analysis was employed for each set. The data was 
transformed to obtain the integrated signal. This process is 
effective in reducing noise in the data. The integrated time series 
was divided to Ns bins, where Ns = int(N/s), N is the length of the 
series. The qth order fluctuation function Fq(s) for q = -10 to +10 
in steps of 1 was determined. 

Figure 1 depicts the linear dependence of lnFq on lns suggesting 
scaling behavior for the healthy subjects. Figure 2 and Figure 
3 also depict the same scaling behavior for myopathy and 
neuropathy patients respectively.

The slope of linear fit to ln Fq(s) versus lns plots gives the values 
of h(q). The values of τ(q) were also determined. As we have 
mentioned earlier, nonlinear dependence of on (q) on q suggests 
multifractality, whereas for a monofractal series τ(q) depends 
linearly on q. The values of h(q) and τ(q) of all the EMG signals 
are depicted in Figures 4 and 5 respectively.

lnFq vs.  lns for a particular set of EMG signal of myopathy 
patient.

Figure 2
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q, or in other words, the degree of multifractality is different in 
different cases. 

Table 1 is formed with the values obtained from Figure 4 where 
we can see that for q = 2 the generalized Hurst exponent h(q) of 
all the EMG signals of healthy and myopathy subjects are greater 
than 0.5 which means that long range correlation and persistent 
properties exist in all the sets. For neuropathy, h(q) is less than 
0.5, which indicates the existence of anti-persistent properties in 
all the sets.

A quantitative determination of the degree of multifractality 
can also be done from the multifractal spectrum. Ashkenazy et 
al. have associated the width of the multifractal spectrum (f(α) 
versus α) with the degree of multifractality [78]. Figure 6 shows 
the multifractal spectrum of healthy, myopathy and neuropathy 
EMG signals.

In Table 2 the values of multifractal width w obtained by fitting 
the multifractal spectrums to Eq. (8) are listed, where we can 
observe that the multifractal widths in five sets of all the three 
healthy, myopathy and neuropathy EMG signals are different 
ranging from as low as 1.144 to as high as 1.257, from 1.507 
to 1.605 and from 1.655 to 1.991 respectively giving a clear 
indication of increasing complexity from healthy subject to 
neuropathy subject.

From Table 3 we can observe that the value of auto-correlation 
exponent γ for set 5 of the healthy person is 0.035 which 
indicates a high degree of correlation as we know lower the value 
of  higher is the degree of correlation. Whereas for the same set, 
for myopathy patient γ is quite high with a close approach to 1, 

lnFq  vs. lns for a particular set of EMG signal of 
neuropathy patient.

Figure 3

h(q) vs. q for a particular set of EMG signals of healthy, 
myopathy and neuropathy.

Figure 4

τ(q) vs. q for a particular set of EMG signals of healthy, 
myopathy and neuropathy.

Figure 5

The nonlinear dependence of τ(q) on q and the dependence of 
h(q) on q gives evidence for the multifractality of the EMG signals. 
Figure 4 also depicts that the degree of dependence of h(q) on 

Order q
Generalized Hurst Exponent h(q)

Healthy Myopathy Neuropathy
-10 1.67 1.71 1.51
-9 1.66 1.70 1.50
-8 1.65 1.69 1.49
-7 1.63 1.67 1.47
-6 1.60 1.65 1.44
-5 1.57 1.61 1.41
-4 1.52 1.57 1.37
-3 1.45 1.50 1.32
-2 1.36 1.39 1.24
-1 1.26 1.18 1.12
0 1.09 0.84 0.68
1 1.01 0.68 0.54
2 0.93 0.57 0.36
3 0.88 0.51 0.29
4 0.85 0.46 0.26
5 0.82 0.42 0.25
6 0.80 0.39 0.23
7 0.78 0.36 0.22
8 0.77 0.34 0.21
9 0.75 0.33 0.20

10 0.75 0.32 0.19

Table 1 Values of h(q) corresponding to q for a particular set of EMG 
signals of healthy, myopathy and neuropathy subjects.
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f(α) vs. α for a particular set of EMG signals of healthy, 
myopathy and neuropathy.

Figure 6

Set
Multifractal Width (w)

Healthy Myopathy Neuropathy
1 1.161 ± 0.042 1.605 ± 0.078 1.655 ± 0.140
2 1.146 ± 0.041 1.583 ± 0.077 1.848 ± 0.103
3 1.257 ± 0.026 1.598 ± 0.087 1.855 ± 0.105
4 1.230 ± 0.050 1.507 ± 0.078 1.991 ± 0.078
5 1.144 ± 0.041 1.598 ± 0.073 1.813 ± 0.082

Table 2 Values of w for all the five sets of EMG signals of healthy, 
myopathy and neuropathy subjects.

Set
Autocorrelation Exponent (γ)

Healthy Myopathy Neuropathy
1 0.132 ± 0.004 0.852 ± 0.010 1.288 ± 0.007
2 0.075 ± 0.006 0.842 ± 0.011 1.462 ± 0.010
3 0.069 ± 0.005 0.793 ± 0.009 1.442 ± 0.009
4 0.262 ± 0.004 0.73 ± 0.010 1.459 ± 0.009
5 0.035 ± 0.005 0.763 ± 0.010 1.431 ± 0.009

Table 3 Values of γ for all the five sets of EMG signals of healthy, myopathy 
and neuropathy subjects.

indicating a very less autocorrelation and for neuropathy patient 
it is greater than 1 which implies there is no correlation at all.

Discussion 
Little work has been done on the analysis of EMG data with 
nonlinear techniques. Gang et al. reported a work [56] which 
aimed to study muscle fatigue during static contraction. Using 
a multifractal method developed by Chhabra and Jensen [85] 
they showed multifractility of SEMG signals. They observed the 
area of the multifractal spectrum of the SEMG signals to increase 
significantly during muscle fatigue. Thus they concluded that 
the area of the multifractal spectrum could then be used as an 
assessor of muscle fatigue which is more sensitive than the single 
characteristic frequency such as the median frequency (MDF) or 
mean frequency (MNF) of the power spectral density (PSD) which 
was a then popular method of estimating fatigue [86,87]. They 
also opined that the large area of SEMG multifractal singularity 
spectrum reflects the strengthened activity of the nervous system 

of the body in the process of muscle fatigue [86]. In another study 
Talebinejad et al. [88] used a bi-phase power spectrum method 
(BPSM) for fractal analysis of SEMG signals and also included 
an algorithm for extraction of fractal indicators (FIs). BSPM was 
evaluated for force and joint angle and the changes that reflect 
in EMG signals were demonstrated with the help of FIs. They 
also compared BSPM with geometrical techniques and the 1/fα 
approach for fractal analysis of electromyography signals and 
concluded that BPSM provides reliable information, as it consists 
of components which are capable of sensing force and joint 
angle effects separately, which could be used as complementary 
information for confounded conventional measures [88].

However as elaborated earlier Oswiecimka et al. have established 
the superiority of MFDFA over other techniques, especially 
the Wavelet Transform Modulus Maxima (WTMM) in terms 
of reliable applications [83]. Compared to other conventional 
methods MFDFA has reached the highest precision in scaling 
analysis. Thus it is considered a rigorous and robust tool for 
assessing correlation in nonlinear time series. Some other 
authors too have advocated the better performance of MFDFA 
than other multifractal analyses methods [63,81,82] as it can 
detect multifractality in both stationary as well as non-stationary 
time series.

Conclusion
Using MF-DFA in our work we have been able to distinguish 
the EMG signals of healthy, myopathy and neuropathy subjects 
effectively with the help of two parameters the multifractal 
width (w) and auto-correlation exponent (γ). Not only we 
observed different degree of multifractility of the EMG signals 
of healthy, myopathy and neuropathy subjects but we have also 
observed the significant variation in degree of auto-correlation 
for all the three subjects where subject with neuropathy shows 
no correlation at all. Thus the present study proposes a novel, 
rigorous method of assessment of myopathy and neuropathy 
using EMG time series from a different perspective and any EMG 
data available may be analyzed using the method for diagnosis 
and prognosis of myopathy and neuropathy and even early 
detection of motor neuron disease.
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