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Abstract

Natural food biopreservatives have always’s remained the preference of health con-
scious consumers. This necessity has led to the studies exploring better alternatives 
which are more acceptable, economical and safer than chemical preservatives. Bac-
teriocins are one of such compounds produced by lactic acid bacteria which offer 
a great potential to contribute in food, health and pharmaceutical industry. Present 
review focuses the complete biochemical, functional and molecular genetic char-
acterization of bacteriocins produced by Pediococcus spp. A great deal of diverse 
heterologous expression systems have been exploited for cloning, expression and 
purification of pediocins at laboratory scale but data is lacking for industrial pro-
cesses. Thus, there is an urgent need to design low cost, industrially viable and con-
tinuous system in order to exploit these natural bioactive compounds in food and 
pharmaceutical industry. 
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Introduction

Lactic acid fermentations are deliberately exploited to pro-
duce various products such as pickled vegetables, bakery 
items, wine making, fermented meat, sausages and cultured 
milk products such as yogurts, cheeses, butter, buttermilk, ke-
fir, koumiss etc. Natural lactic acid fermentations are brought 
about by lactic acid bacteria (LAB) which includes a large group 
of relatively fastidious, heterotrophic Gram-positive bacteria 
that produce lactic acid as an end product of carbohydrate 
fermentation. Core microbial genera of LAB include Lactoba-
cillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus 
which are grouped together in the family lactobacillaceae. 
Their industrial importance is evidenced by their ubiquitous 
occurrence in natural food products, Genarally Recognized as 
Safe (GRAS) status, and ability to exert health benefits beyond 
basic nutrition. LAB display numerous antimicrobial activities 
which are mainly exhibited due to production of organic ac-
ids, bacteriocins and anti-fungal agents [1-6]. Highly promising 
results are obtained in the studies underlying the functional 
importance of bacteriocinogenic LAB as starter culture, con-
sortium members and bioprotective agents in food industry 
that improve food quality, safety and shelf life [7]. Applications 
of bacteriocin starter cultures and bacteriocin thereof in vari-
ous food systems are already addressed in a number of review 
articles [8-11]. LAB is commonly exploited in the dairy industry 

as producers of flavoring enzymes and metabolites that con-
tribute to naturally rich flavor and texture of foods. A variety of 
probiotic LAB species including Lactobacillus acidophilus, L. bul-
garicus, L. lactis, L. plantarum, L. rhamnosus, L. reuteri, L. fermen-
tum, Bifidobacterium longum, B. breve, B. bifidum, B. esselnsis, B. 
lactis, B. infantis are currently recommended for development 
of functional food products with health-promoting capacities 
[12]. Health claims of various LAB strains include normaliza-
tion of gastro-intestinal [13-14] and vaginal ecosystem [15-16], 
improvement of specific and non-specific immune responses 
[17], detoxification of carcinogens and suppression of tumors 
and cancers [18-20], reduction of blood pressure in hyperten-
sive patients [21] and cholesterol [22]. Importance of LAB in 
treatment of milk allergies [23] and improvement of mineral 
absorption capacity of the intestine is also well documented 
in the literature [24]. 

Pediocins: The anti-microbial peptides 
(AMPs)

Pediococci as saprophytes were first isolated and characterized 
from plants by Mundt et al. [25] as catalase-negative, homo-
fermentative bacteria producing lactic acid as a result of sugar 
fermentation that can tolerate temperature as high as 50°C 

mailto:baljinderbt@hotmail.com


iMedPub Journals
This article is available from: http://www.acmicrob.com  ARCHIVES OF CLINICAL MICROBIOLOGY

2011
Vol. 2 No. 3:4

doi: 10:3823/231

2 © Under License of Creative Commons Attribution 3.0 License

[26]. These highly fastidious, non-motile, non-sporulating fac-
ultative anaerobes belong to family lactobacillaceae with P. aci-
dilactici, P. pentosaceus, P. damnosus, P. parvulus, P. inopinatus, P. 
halophilus, P. dextrinicus, P. cellicola, P. claussenii, P. ethanolidu-
rans and P. stilesii as the representative species. P. pentosaceus 
and P. acidilactici are commonly used in the fermentation of 
vegetables [27] and meats [28]. 

Anti-microbial peptides or bacteriocins are raised as an inte-
gral component of the bacterial defense mechanism and have 
been identified and characterized in a number of prokaryotic 
organisms. Bacteriocins have long attracted the interest of 

food sector as potential natural food preservatives against 
spoilage and pathogenic bacteria. Pediocins produced by vari-
ous pediococcal species have gained considerable attention 
because of their remarkable heat stability, activity over a wide 
pH range, broader antimicrobial spectrum; higher specificity 
and effectiveness in very low concentrations [1-3, 9, 10]. A large 
number of pediocins have been isolated and characterized till 
date. Table 1 describes production of pediocins by various 
Pediococcal strains, class they belong to, association of their 
genetic determinants with small cryptic plasmids, their bio-
chemical characteristics, mode of action and the antimicrobial 
spectrum. 

Bacterio-
cin

Producer  
organism

Class
MW 

(kDa)

MW of 
Bac+ 

plasmid
Degraded by

Ther-
mosta-

blity 
(100-

120°C)

pH 
range

Polypeptide 
nature

Mode of 
action

Antimicrobial range
Refe-

rences

Bacteriocins produced by Pediococcus acidilactici

Pedio-
cin AcH

P. acidilac-
tici H, E, 

F, M
IIa 4.6

8.9 kb
pSMB74

Trypsin, papain, 
a-chymotrypsin, 
protease K, ficin, 
protease IV, XIV 

& XXIV

yes 2.5-9.0

net +ve charge; 
pI 9.6; sequence  
is KYYGNGVTC-

GKHSCSVD-
WGKATTCI-

INNGAMAWAT-
GGHQGNHKC

Bacteri-
cidal & 
Bacte-
riolytic

Aeromonas hydrophila, Bacillus 
cereus, Brochothrix, Clostridium 
perfringens, C. botulinum, En-
terococcus faecalis, E. faecium, E. 
hirae, Escherichia, Lactobacillus 
brevis, L. curvatus, L. leichmanni, 
L. plantarum, L. viridescens, Liste-
ria  monocytogenes, L. innocua, 
L. seeligeri, Lactococcus lactis, 
Leuconostoc mesenteroides,  Mi-
crococcus sedentarius, Pediococ-
cus  acidilactici, P. pentosaceus, 
Pseudomonas putida, Salmonella,  
Staphylococcus aureus, S. xylosus, 
Yersinia

1, 36-43

Pedio-
cin PA-1

P. acidilac-
tici PAC1.0 
NRRL-5627

IIa 4.6
9.3 kb

pRSQ11
Protease, papain, 
a-chymotrypsin

yes 2.0-
10.0

net +ve charge; 
pI 8.65; se-

quence is KYYG-
NGVTCGKHSC-
SVDWGKATTCI-
INNGAMAWAT-
GGHQGNHKC

Bacteri-
cidal & 
Bacte-
riolytic

B. cereus, L. bifermentans, L. 
brevis, L.  plantarum, L. lactis, L. 
dextranicum, L. mesenteroides, L. 
monocytogenes, P. acidilactici, P. 
pentosaceus

1, 26, 
40, 44

Pedio-
cin PO2

P. acidilac-
tici PO2

IIa 4.6 5.5 MD
b-chymotrypsin, 
protease I & XIV, 

trypsin, lysozyme

yes
- -

Bacteri-
cidal

B. coagulans, E. faecalis, L. curva-
tus,  L. monocytogenes, L. mesen-
teroides, S.  aureus, Streptococcus 
faecalis

45-49

Pedio-
cin JD

P. acidilac-
tici JD-123

IIa - - Trypsin
yes

- -
Bacteri-

cidal
L.  monocytogenes 50-51

TABLE 1.  Bacteriocins of Pediococcus spp.: their classes, genetic and biochemical features, mode of action and antimicrobial spectrum.
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Pedio-
cin 
PC

P. acidilac-
tici 
PC

IIa - 8.47 kb
Chymotrypsin, 
ficin, protease,

trypsin

yes
4.0-8.0 -

Bacteri-
cidal

C. perfringens, Listeria, Leucono-
stoc, Pediococcus

52, 166

Pedio-
cin SJ-1

P. acidilac-
tici SJ-1

IIa 4.0 4.6 MD

a-amylase, a-
chymotrypsin, 

trypsin, protease 
XIV, papain, 
proteinase K

yes
3.0-9.0

basic polyep-
tide; pI in alka-

line range

Bacteri-
cidal

C. perfringens, L. brevis, L. plan-
tarum, L. leichmanni, L.  monocy-
togenes

53

Pedio-
cin L50

P. acidilac-
tici L50

IIa 5.25 -
Trypsin, papain, 

protease II, VI 
& XIV

yes 2.0-
11.0

net +ve 
charge; partial 

sequence is 

Bacteri-
cidal

B. cereus, C. botulinum, C. 
perfringens, E. faecalis, L.  mo-
nocytogenes, S. aureus, L. brevis, 
L. plantarum, L. sake 148, L. inno-
cua, L. lactis, L. mesenteroides,  P. 
acidilactici, P. pentosaceus

54

Pedio-
cin AcM

P. acidilac-
tici M

IIa 4.6 - Trypsin
yes 1.0-

12.0
- -

A. hydrophila, B. coagulans, B. 
cereus, C. perfringens, L. monocy-
togenes,  S. aureus

55

Pedio-
cin F 

P. acidilac-
tici F

- 4.46 9.1 Many proteases
yes

Wide
Resistant to or-
ganic solvents

- - 56-57

Pedio-
cin CP2

P. acidilac-
tici CP2

IIa 4.63
8.9 kb 

pCP289

a- chymotrypsin, 
pepsin, pa-

pain, proteinase K, 
trypsin

yes 2.0-9.0
pI 8.85; resistant 
to many organic 

solvents

Bacte-
ricidal, 

Bac-
terio-
static, 
Anti-

fungal 
and 

Spore 
inhibi-

tory

Aspergillus flavus, C.  sporogenes, 
E.  faecalis, L. brevis, L. bulgaricus, 
L. mesenteroides,  L.  monocytoge-
nes, Micrococcus flavus, Neisseria 
mucosa, P. acidilactici, P. pento-
saceus,   Pseudomonas  putida, P. 
aeruginosa, Staphylococcus albus, 
S. aureus, Streptococcus mutans, 
S. pyogenes

58-60

Pedio-
cin SA-1

P. acidilac-
tici NRRL 

B5627
IIa 3.66 -

proteinase K , 
but resistant 

to trypsin, 
α-chymotrypsin, 
pepsin and pa-

pain 

yes
-

N-terminal 
sequence: 

KYYGXNGVX-
TXGKHSXVDX

Bacteri-
cidal

B. cereus, C. sporogenes, C. thiami-
nolyticum, E. faecalis, L.  brevis, L. 
bulgaricus, L.  casei, L. curvatus, 
L.  jensenii, L. plantarum, L.  sakei, 
L. lactis, L. monocytogenes, L. 
innocua, L.  mesenteroides, M.  
flavus, M. luteus, P. acidilactici, P. 
pentosaceus,  S. carnosus

61

Bacteriocins produced by Pediococci other than P. acidilactici

Pedio-
cin A

P. pentosa-
ceus ATCC 

43200, 
ATCC 
43201

? 80.0

13.6 MD
pFBB61,
10.5 MD
pFBB63

Trypsin, pronase, 
proteinase K

Heat 
labile

- -
Bacteri-

cidal

B. cereus, C.  botulinum, C.  
perfringens, C. sporogenes, C. 
tyrobutyricum, E. faecalis, E. coli, 
L. monocytogenes, L. innocua, 
L. sake, L. brevis, L. plantarum, L. 
lactis, L. mesenteroides, P. acidi-
lactici, P. pentosaceus,  Salmonella 
typhimurium, S.  aureus

1, 62-66
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Pedio-
cin N5p

P. pentosa-
ceus

- - -

Acid protease, 
a- chymotrypsin, 

pepsin, ficin, 
papain

yes
2.0-8.0 -

Bacteri-
cidal

Lactobacillus hilgardii, Leuconos-
toc oenos, P. pentosaceus E5p

67-68

Pedio-
cin PD-1

P. damno-
sus NCFB-

1832
- @ 3.5 - proteinase K

yes 2.0-
10.0

pI 3.5 
Bacteri-

cidal

Oenococcus oeni,  several food 
spoilage and pathogenic bac-
teria

69

Pedio-
cin ISK-
1 (nu-
kacin 
ISK-1)

Pediococ-
cus sp. 
ISK-1

- - -

Acid protease, 
a- chymotrypsin, 

pepsin, ficin, 
papain

yes 3.0-8.0
-

Bacteri-
cidal

Bacillus subtilis, L. casei ssp. casei, 
L. lactis, M.  luteus, P. acidilactici

70-71

Pedio-
cin K1

Pediococ-
cus sp. 

KCA1303-
10

IIa 4.2 9.1 kb
Pronase, pepsin, 

trypsin, lipase
yes 2.0-

10.0
-

Bacteri-
cidal

E. faecalis,  E. faecium, L. monocy-
togenes

72

Pento-
cin L

P. pentosa-
ceus L

- 27 - -
yes

- - -
Broad inhibition spectrum, B. 
subtilis, B. cereus

73

Pento-
cin S

P. pentosa-
ceus S

- 25 - -
yes

- - -
Broad inhibition spectrum, B. 
subtilis, B. cereus

73

Pedio-
cin 

ACCEL

P. pen-
tosaceus 
ACCEL

IIa 17.5 -

a- chymotrypsin, 
pepsin, trypsin, 

papain, proteinase 
K, pronase, bro-

melain

yes
2.0-6.0

N-terminal 
sequence: 

KYYGNGVTXG-
KHSXXVDXG

Bacteri-
cidal

B. subtilis, B. cereus, C. perfringens, 
L. helveticus, L. plantarum, L. 
monocytogenes L. lactis, P. pento-
saceus, S.  faecalis, S. epidermidis

74

Pedio-
cin ST18 

P. pentosa-
ceus ST18

IIb
- - -

yes 2.0-
12.0

Resistant to 
detergents, 

EDTA and PMSF. 
It does not 

adhere to pro-
ducer cells

Bacte-
riostatic

L.  innocua, L. plantarum, Pedio-
coccus spp.

75
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Pedio-
cin 

SM-1

P. pentosa-
ceus SM-1

IIa 5.37 -

a- chymotrypsin, 
pepsin, trypsin, 
papain, protei-

nase K

yes
wide -

Bacteri-
cidal

C. thiaminolyticum, C. sporo-
genes, L. monocytogenes, L. in-
nocua, Pediococcus spp.,  several 
LAB species

61

Pedio-
cin 

pK23-2

P. pentosa-
ceus K23-2

IIa 5.0 - Many proteases
yes

-
Resistant to or-
ganic solvents

-
Gram-positive bacteria, espe-
cially L. monocytogenes

76

Pedio-
cin 

05-10

P. pentosa-
ceus 05-10

IIa <6.5 - Many proteases
yes 2.0-

10.0

It shows ad-
sorption to 

both resistant 
and sensitive 

cells but not to 
producer cells

Bacteri-
cidal

Enterococcus, Lactobacillus, Leu-
conostoc, Listeria, Pediococcus, 
Streptococcus

77

Bacte-
riocin 

ST44AM

P.  pen-
tosaceus 
ST44AM

IIa 6.5 - Many proteases
yes 2.0-

12.0

Resistant to 
detergents, 

urea, NaCl and 
EDTA

Bacteri-
cidal

E. coli, Klebsiella pneumoniae,  L.  
monocytogenes, L. innocua, L. 
ivanovii subsp. ivanovii, P.  aeru-
ginosa, other LAB

78

Classification of bacteriocins

Five classes of bacteriocins have been established based on the 
producing strains, common resistance mechanisms, mecha-
nisms of action, molecular weights and chemistry [29-31]. Class 
I includes post-translationally modified, small lantibiotic pep-
tides containing a number of modified amino acid residues, 
and it’s further divided in to two subclasses. Class Ia groups 
peptides with a net positive charge that exert their activity 
through the formation of pores in bacterial membranes (e.g. 
Nisin). They constitute pfam domains PF05500 and PF04369, in 
conjunction with F(ND)L(DEN)(LVI), SLCTPGC and SXXXCPTTX-
CXXXC motifs [32]. Class Ib mainly consists of post-translation-
ally modified, small globular peptides with a negative or zero 
charge (e.g. Mersacidin) which’s antimicrobial activity is related 
to the inhibition of specific enzymes. F(ND)L(DEN)(LVI), FTCCS, 
GXXXTOBX-C motifs and PF05500 and PF04369 pfam domains 
have been identified in class Ib bacteriocins. Class IIa specifies 
small, strongly cationic, heat stable, non-lantibiotic, antiliste-
rial pediocin-like peptides with at least one disulfide bridge 
(e.g. Pediocin PA-I, Pediocin CP2, Pediocin AcH, Enterocin A). 
N-terminal YGNGVXC, LSXXELXXIXGG and double glycine mo-
tifs and PF04604, PF02052, PF01721 pfam domains characterize 
class IIa bacteriocins. Class IIb bacteriocins require two differ-
ent peptides of 25 to 65 kDa, constituting domains PF02052, 

PF01721 and motifs P(RQ)GXXXTOBX-C, LSXXELXXIXGG and 
double GG for their activity (e.g. Lactococcin G). Class IIc in-
cludes remaining cationic bacteriocins of 30 to 65 kDa which 
are secretory signal-dependent bacteriocins (e.g. Acidocin B). 
Large heat labile bacteriocins are clustered together under 
class III (e.g. Helveticin). Fourth class comprises an undefined 
mixture proteins, lipids and carbohydrates usually more than 
10kDa in size. The existence of the fourth class was supported 
mainly by the observation that some bacteriocin activities 
obtained in cell free supernatant, exemplified by the activity 
of L. plantarum LPCO10, were abolished not only by protease 
treatments, but also by glycolytic and lipolytic enzymes [33]. 
Pediocin SJ-1, pediocin PO2 and pediocin K1 lost 50% or more 
acitivity upon treatment with alpha amylase, lysozyme and li-
pase respectively (Table 1). Thus, a situation of ambiguity arises 
whether to keep these heat-stable and anti-listerial bacterio-
cins in class IIa or class IV (Author’s own observation). One ad-
ditional group of circular bacteriocins of 49-108 kDa, carrying 
two trans-membrane segments were housed in class V and has 
been described in BAGEL database [31]. BAGEL is a web-based 
bacteriocin genome mining tool that helps to identify putative 
bacteriocin ORFs in microbial genomes by extending various in 
silico computational methods using novel, knowledge-based 
bacteriocin databases and motif databases. Many bacteriocins 
are encoded by small genes that are often omitted in the an-
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notation process of bacterial genomes. Gassericin A, circulatin 
A, and carnocyclin A are few examples of circular bacteriocins 
which may carry two trans-membrane segments that facilitate 
pore formation in sensitive cells [31, 34-35]. Their unique func-
tional activities as well as circular nature make them potential 
candidates for developing novel antimicrobial agents. Class I 
and II bacteriocins are produced as pre-bacteriocins and usu-
ally processed during their transport through the cytoplasmic 
membrane at G(SA) and P(RQ) sites and GG, GG P(RQ) and 
G(GSA) sites respectively. 

Mechanism of pediocin action

AMP’s are frequently enriched in cationic amino acid residues 
and interact very strongly with anionic bacterial membranes. 
They kill sensitive bacteria by punching holes in their cell mem-
branes, causing a disruption in their trans-membrane potential 
(PMF) and destroying the delicate balance of which the organ-
isms maintain between themselves and their environment [79]. 
In a study conducted on membrane vesicles derived from both 
sensitive and immune cells, liposome delivered pediocin PA-1 
elicited efflux of small ions in a concentration dependent man-
ner [79]. Higher concentration of pediocin effectively released, 
higher molecular weighted substances. They frequently adopt 
conformations where polar and non-polar residues are segre-
gated properly resulting in a typical amphipathic structure that 
exhibits more peptide internalization and membrane pertur-
bation. Trans-membrane potential (negative inside) in bacteria, 
acts as a potential driving force for insertion and internaliza-
tion of the antimicrobial peptides promoting AMP interaction 
[80]. Pediocin PA-1 exerts bactericidal or bacteriolytic effect de-
pending on the species of the sensitive cells [81]. Pediocins also 
act on some sensitive bacterial strains in bacteriostatic manner 
and thus retard further proliferation of the sensitive cells (e.g. 
Pediocin ST18, pediocin CP2). Antifungal and spore-inhibitory 
property of a broad spectrum pediocin CP2 has been explored 
in a study conducted at Department of Biotechnology, Punjabi 
University, Patiala, India. Antibacterial activity of bacteriocins 
produced by Pediococci is well documented in literature but, 
none of the earlier report indicates their antifungal property 
against A. niger isolates [82]. Currently scientists are focusing 
on these deadly workings of AMPs as a new approach to treat 
bacterial infections [12-17, 21, 83-85]. A study conducted using 
nisin indicated its effectiveness and efficiency as alternative 
therapeutic to antibiotics for the treatment of Staphylococcal 
mastitis [83, 84]. In vitro and in vivo studies performed with ly-
sostaphin a class III bacteriocin have shown that this staphylo-
coccin has potential to be used, solely or in combination with 
other antibacterial agents, to prevent or treat bacterial staphy-
lococcal infectious diseases [83]. Nowadays, purified bacterio-
cins are available and have shown to posssess anti-neoplastic 
activity. Pyocin, colicin, pediocin, and microcin are among bac-
teriocins reported to present such activity. Moreover, modified 
bacteriocins proved to be effective in a glioblastoma xenograft 
mouse model [85].

Applications of bacteriocin producing 
LAB in food industry

Foodborne pathogens can multiply rapidly during extended 
storage at low temperature and under oxygen stress condi-
tions, which make food unfit for consumption. Aeromonas 
hydrophila, Bacillus, Clostridium botulinum types B and E, Esch-
erichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, 
Salmonella enterinais, Shigella, Yersinia enterocolitica have been 
isolated from refrigerated foods and implicated in outbreaks of 
foodborne illness [54,86-88]. Strains of mesophilic organisms 
such as Salmonella and Escherichia are capable of proliferation 
in temperature abused (10-12°C) refrigerated systems. B. cereus 
has been well established as a cause of foodborne illness in hu-
mans [89-90]. Pathogenicity of B. cereus is associated with tis-
sue destructive/ reactive exoenzyme production. It secretes a 
proteinaceous enterotoxin and induces a diarrheal syndrome. 
In addition to food poisoning, it causes a number of systemic 
and local infections in both immunologically compromised 
and immunocompetent individuals including aplstic anemia, 
brain abscesses, endophthalmitis, gas gangrene, meningitis, 
pneumonia and pseudomembranous tracheobronchitis [91]. 
Many pediocins are effective in controlling growth and mul-
tiplication of such foodborne pathogens and spoilage organ-
isms in various food systems (Table 1). Many studies have high-
lighted the resistance of Gram-negative species to LAB bacte-
riocins [89, 92]. Skytta et al. [93] reported that some selected 
strains of Pediococci: one of P. damnosus and two of P. pento-
saceus synthesize broad spectrum bacteriocins that effectively 
kill Gram-negative Y. enterocolitica, P. fragi and P. fluorescens in 
minced meat. Increased activity of bacteriocins was observed 
when they were used in combination with other antagonistics 
factors. A few reports indicated that sublethal injury due to 
heating, freezing, low pH exposure, ultrahigh pressure, elec-
troporation, presence of chemical bactericidal agents such 
as sodium acetate, detergents and chelating agents enhance 
susceptibility of Gram-negative bacteria such as A. hydrophila, 
S. typhimurium, Y. enterocolitica, E. coli, P. putida, P. fluorescens 
etc. against LAB bacteriocins [42-43, 94-101]. The presence of 
bacteriocin-producing LAB could act as a potential barrier to 
inhibit the growth of spoilage bacteria and foodborne patho-
gens. Bromberg et al. [102] tested 813 strains of LAB which were 
able to inhibit the growth of Staphylococcus aureus CTC33 and/
or Listeria innocua Lin11 invitro in meat and meat products 
against a range of Gram-positive (B. cereus, C. sporogenes, C. 
perfringens, E. faecalis, L. plantarum, S. aureus) and Gram-neg-
ative (E. coli, Pseudomonas sp., S. typhimurium) test organisms 
and found that, Of these 128 strains showed various inhibition 
frequencies. 

Today consumers’ preference for safe, fresh-tasting, ready-to-
eat, minimally-processed foods has created the necessity of ex-
ploration of novel and natural alternatives to chemical preser-
vatives, which are useful to control development of food spoil-
age and pathogenic microorganisms in food systems. Nisin is a 
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good example of food bio-preservative as well as an additional 
hurdle factor for increasing the shelf-life of minimal processed 
foods [103]. Antimicrobial substances produced by LAB offer 
potential applications in food preservation, food safety as well 
as to develop “novel” foods, health care, and pharmaceutical 
products [9, 88]. Bacteriocins could be added to canned/pack-
aged food items in the form of concentrated preparations, 
or they could be produced in situ by bacteriocin producing 
starter cultures. Immobilized bacteriocins could be exploited 
to develop bioactive food packaging materials. Foods are con-
sidered as highly complex ecosystems where microbial inter-
actions may influence bacteriocin efficacy and proliferation of 
harmful bacteria. There is a necessity to understand the global 
effects of bacteriocins in food ecosystems, to study bacterial 
genomes which may reveal new sources of bacteriocins and 
to develop genetically engineered food grade expression sys-
tems for development of commercial products. 

Therapeutic potential of LAB  
bacteriocins

In the past 4 to 5 decades, use of antibiotics to fight against 
infectious diseases caused by microorganisms, has lead to dra-
matic rise of average life expectancy in humans. Unfortunately, 
the eventual appearance of strains resistant to multiple antibi-
otics in disease-causing microbes is an increasing public health 
problem in recent years. Urogenital problems such as bacterial 
vaginosis, gastrointestinal infections, pneumonia, septicemia 
and childhood ear infections are just a few of such diseases 
that have become hard to treat with antibiotics. Very often, 
bacteria develop several ways to resist antibiotics and other 
antimicrobial drugs. Other factors such as poor medical facili-
ties, increasing use and misuse of existing antibiotics in human 
and veterinary medicine and in agriculture has significantly 
worsened the problem.

Bacterial vaginosis (BV) is one such problem where an inflam-
mation of vagina occurs when the natural microbial balance of 
vagina is disturbed. Gardner [104] indicated association of bac-
teria such as Gardnerella vaginalis, Prevotella bivia, Peptostrepto-
coccus spp. Mycoplasma hominis, Mobiluncus and a yeast strain 
Candida albicans with bacterial vaginosis. BV can have adverse 
outcomes of pregnancy [105-112] and enhances susceptibility 
to infection by HIV [113], HSV type 2 [114] and other sexually 
transmitted diseases. Goldstein et al. [115] had demonstrated 
that resistance of G. vaginalis to metronidazole increased to 
68% in year 2000. Recurrence rates of up to 30% within three 
months after treatment have been reported [116]. 

Helicobacter pylori infection is another problem that affects al-
most all patients with duodenal ulcers and 70% of cases with 
gastric ulcers [117]. Pathogen weakens the protective mucous 
coating of the stomach and duodenum by secreting urease, 
protease or phospholipases etc. as virulence traits helping col-
onization of the pathogen. Both acid and bacteria irritate the 

lining and cause a sore, or ulcer [118]. Peptic ulcers are usually 
treated by antibiotics, proton pump inhibitors, antiacids and 
H2 blockers [12, 119-120]. However, emergence of antibiotic 
resistance in H. pylori due to point mutations and decreased 
binding of the antibiotics to the ribosomes has raised the con-
cern [121-125]. 

Lactobacillus paracasei CRL1289 shows strong inhibition of S. 
aureus induced urinogenital infection as tested in a mouse 
model [126]. Probiotic LAB provides best alternative and at-
tractive proposition to get rid of these opportunistic patho-
gens of vaginal and gastrointestinal tract. Skarin and Sylwan 
[127] studied growth inhibitory properties of vaginal lactoba-
cilli against bacterial species associated with BV. Lactacin A164 
produced by L. lactis subsp. A164, lacticin BH5 produced by L. 
lactic subsp. BH5, bulgaricin BB18 produced by L. bulgaricus 
BB18 and enterocin MH3 produced by Enterococcus faecium 
MH3 have shown strong anti-Helicobacter pylori activity in 
laboratory experiments [128,129]. Thus, bacteriocin producing 
starter cultures are potential candidates for formulating health 
promoting functional food products or vaginal creams which 
might be used to contribute a beneficial effect on the balance 
of intestinal and vaginal microflora respectively. 

Probiotics: Best alternative to antibiotic 
therapy

Prof. Metchnikoff [130] the Nobel laureate of 1908, introduced 
the concept of probiotics in his book “The Prolongation of Life”. 
He argued that these friendly living bacteria normalize bowel 
habits, fight against disease-carrying bacteria and extend nor-
mal life span. Term “Probiotic” was first introduced by Kollath 
[131]. Fuller [132] gave a widely accepted definition of probiot-
ics as “A live microbial feed supplement which beneficially affects 
the host animal by improving its intestinal microbial balance”. 
Since their establishment in various food systems, they are 
widely recommended in rotavirus diarrhea, to get rid of antibi-
otic-associated side effects, food allergies, lactose intolerance, 
atopic eczema, irritable bowel syndrome, inflammatory bowel 
disease, cystic fibrosis, traveller’s diarrhea, dental caries, to en-
hance proficiency of oral vaccines and to reduce incidence of 
certain cancers [12, 133]. The protective role of probiotics was 
established in colon [20, 134] and cervical cancer [135]. 

The indigenous microbiota plays an important role in protect-
ing the host from colonization by opportunistic pathogens. 
Earlier studies have highlighted the inhibitory affects of the 
LAB towards BV associated pathogens [127, 136]. Lactobacillus 
is the predominant genus in the vaginal and endocervical mi-
crobial communities [137-139]. A number of studies explored 
the role of bacteriocin-like substances from vaginal isolates of 
Lactobacillus sps. to inhibit the growth of vaginal pathogens 
like E. coli, E. faecalis, E. faecium, G. vaginalis, Klebsiella spp., N. 
gonorrhoeae, S. aureus and Streptococcus agalactiae [140-142]. 
Lactocin 160, a bacteriocin produced by a probiotic vaginal L. 
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rhamnosus has been shown to target cytoplasmic membrane 
of G. vaginalis [143]. The potential use of human lactobacilli as 
probiotics assigned to restore and maintain a healthy urogen-
ital tract represents a promising alternative to conventional 
chemotherapy [12, 144-161]. 

Pediocin production: A plasmid linked 
trait in pediococci

In last two decades, there have been significant advances in 
functional genomic analyzes of LAB and biochemical charac-
terization of bacteriocins produced by them. Considerable ef-
forts have been made to functionally characterize bacteriocin 
operons and to express them in heterologous systems [57, 170, 
178-195]. Whole genome sequence and sequences of several 
cryptic plasmids of Pediococci bearing genetic determinants 
for bacteriocin production can be retrieved from GenBank da-
tabase of NCBI. As far as genetic characterization is concerned, 
pediocin PA-1 produced by various P. acidilactici strains has 
been studied extensively. Gonzalez and Kunka [26] showed 
that pediocin PA-1 operon of P. acidilactici PAC1.0 NRRL-5627 
is located on 9.3 kb plasmid pRSQ11. Bhunia et al. [36] isolated 
a bacteriocin producing strain P. acidilactici H from fermented 
sausage. Subsequently, in their laboratory, they also identified 
three more Bac+ strains; E, F and M, from different sources ca-
pable of producing pediocin AcH. Pediocin production trait in 
all of these strains has been linked to 8.9 kb plasmid pSMB74 
[37, 162-164]. P. acidilactici strains harbour this high copy 
number plasmid which is generally lost from the cells under 
stress [1] and could be transferred to plasmidless P. acidilactici 
strains [163]. Plasmid pSMB74 has been completely sequenced, 
mapped and fragments have been cloned in a pUC119 vector 
[165]. In P. acidilactici SJ-1, only pediocin SJ-1 structural gene is 
associated with a 4.6 MDa plasmid, but not its immunity factor 
[53]. Bacteriocin production in P. acidilactici PC too is a plasmid 
linked feature [52, 166]. Few other reports also indicated the 
plasmid linkage of bacteriocin activity in Pediococcus species. 
Pediocins such as PO2, PC, SJ-1, L50, AcM, F, CP2, SA-1, PD-1, K1, 
ACCEL, SM-1, pK23-2, ST44AM, and 05-10 are other examples 
where association of bacteriocin production trait has been 
established with small cryptic plasmids [45, 52-58, 61, 69, 72, 
74, 76-78]. In P. pentosaceus, production of more than 10 bac-
teriocins has been reported (Table 1). Pediocin A operon in P. 
pentosaceus FBB61 and P. pentosaceus FBB63 has been linked to 
plasmids of 13.6 and 10.5 MDa sizes, respectively [62, 63, 66]. 
Pediocin A encoding plasmid pMD136 of P. pentosaceus ATCC 
43200 was characterized by restriction fragment analysis by 
Kantor et al. [167]. Genetic information regarding production of 
various bacteriocins in P. pentosaceus (N5P, PD-1, ISK-1, ACCEL, 
ST18, SM-1, pK23-2, 05-10, bacteriocin ST44AM and pentocins 
L and S) and their immunity factors is currently not available. 
Plasmid borne characters have a great potential for genetic 
manipulations and improvement of strains for conventional 
starter cultures used in biotechnology industry. Their ability 
to show antagonism against food spoilage and pathogenic mi-
crobes opens up scope for the development of food grade bio-
preservatives and novel therapeutics. At the same time, such 

plasmid encoded characters are of interest to food technolo-
gists as they could be transferred to selected strains of LAB to 
develop strongly competitive starter culture bacteria which are 
capable of predominating over natural flora by direct antago-
nism along with their superior fermentation characteristics.

Genetic organization of pediocin  
operon

Pediocin PA-1 of P. acidilactici PAC1.0 and pediocin AcH of P. 
acidilactici H have been shown to contain a cluster of four 
genes with common promoter and terminator sequences [40, 
168-169]. PedA encodes a 62 amino acids long prepediocin 
PA-1. Eighteen residue long leader sequence from N-terminal 
of pre-pediocin is removed during processing and export of 
pediocin through producer cell membrane. Mature pedio-
cin carries 44 amino acid residues and two intra-molecular 
disulphide bridges at cys9-cys14 and cys24-cys44 positions 
[46, 170-171]. PedB immunity gene is located downstream to 
pedA and encodes a protein of 112 amino acid residues. PedC 
a 174 amino acid long amphiphilic protein involved along with 
pedD protein in facilitating/accelerating the trans-membrane 
export of prepediocin in P. acidilactici [168]. PedD gene speci-
fies a polypeptide of 724 amino acid residues. Deletion analysis 
and site specific mutagenesis of pedD resulted in complete loss 
of pediocin production, showing its essentiality for secretion 
in E. coli [40]. PedD sequence show a very high homology to 
members of ATP dependent transport proteins and also to a 
group of eukaryotic proteins involved in multidrug resistance 
[40]. Very high similarity of pedD was already established with 
HlyB, an E. coli membrane protein required for the export of 
hemolysin A [172]. ComA (required for competence induction 
in Streptococcus pneumonia) is another member of this fam-
ily of ATP binding protein with high degree of similarity [40]. 
These proteins carry an ATP binding motif (GMSGSGKTT) [40]. 
Pediocin AcH is another well characterized pediocin of P. aci-
dilactici H linked to papABCD operon involving pediocin AcH 
structural gene (papA), immunity function (papB), ABC trans-
port proteins (papC and papD) that play an important role 
in translocation and processing of active pediocin AcH [170]. 
Miller and coworker [172] provided experimental evidence by 
random mutagenesis that all four cysteine residues in pediocin 
AcH are necessary for its activity, as they play a vital role in 
stabilization of the secondary structure of this small peptide. 
His-kinase and C39-protease are other genes usually found as-
sociated with bacterioicn operon and are indirectly involved 
in production and secretion of active bacteriocins by producer 
organisms [31].

Cloning and heterologous expression  
of pediocins 

Since the establishment of pediocin production as a plasmid 
linked trait, studies on cloning these plasmids in heterologous 
systems have started. Table 2 summarizes all those efforts 
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TABLE 2.  Cloning and expression of pediocins in heterologous systems.

Pediocin
Producer 
Organism

Vector Expression Host Activity Comments References

Pediocin PA-1
P. acidilactici 
PAC 1.0

pSRQ11 and 
pVA891

E. coli + Linearized pRSQ11 ligated to linearized pVA891 40

Pediocin AcH P. acidilactici H
Shuttle vector 
pHPS9

E. coli χ925 and a 
ped- P. acidilactici 

+
Transformed minicells of E. coli chi 925 require 
papA and papD for pediocin AcH production and 
secretion

168

Pediocin PA-1
P. acidilactici 
PAC 1.0

- L.  lactis +
Expressed successfully under lactococcal 
promoter 

182

Pediocin P. acidilactici pMC117
L. lactis subsp. lactis 
MM210

+
Electro-transformed L. lactis subsp. lactis MM217 
got ped+ phenotype with no alterations in its 
cheese making properties 

194

Chimeric 
Pediocin AcH-
MBP proteins

P. acidilactici H
pPR682
pIH821

Periplasmic leaky E. 
coli E609L

+
> 90% reduction in viable cell counts after 24h 
IPTG induction in pIH821; whereas 10% viability 
loss reported in pPR682

170

Pediocin 
PA-1 with 
lactococcin 
A promoter 
and leader 
sequence

P. acidilactici pFI2058 L. lactis IL1403
+ 

Recombinant displayed 25% pediocin activity.
Additional copies of lcnC and lcnD introduced to 
raise activity.
Nisin and pediocin coexpressed in L. lactis IF5876

183-184

Pediocin P. acidilactici Shuttle vector  PST
S. thermophilus, E. 
coli, L. lactis ssp. 
lactis, E. faecalis

+
Expressed under p2201 and repA of S. 
thermophilus
Production stable up to 10 sub-culturing only

178

Pediocin PA-1
P. acidilactici 
PAC1.0

yT&A
Yeast expression 
vector

S. cerevisiae Y294
 
+

Expressed using yeast ADH1 promoter & MFa1S 
signal peptide and bactericidal yeast strain 
developed for wine, baking and brewing 
industries

192

Pediocin PA-1 
P. acidilactici 
347

pMG36c, 
pHB04 with P32 
promoters

L. lactis IL1403 +
pedA and pedB genes coexpressed successfully 
with enterocin A in L. lactis IL1403 though at very 
low levels

185

Pediocin F P. acidilactici F pQE32 E. coli +

T5 promoter based expression and over 
expressed upon induction with IPTG 
and purified by Ni-NTA metal affinity 
chromatography

57

Pediocin P
P. pentosaceus 
Pep1

pHD1.0 E. coli JM109 _
Successfully electro-transformed E. coli JM109 
but no activity in recombinant cells 

57

Pediocin P. acidilactici pPC418
L. lactis ssp. lactis, 
S. thermophilus, E. 
faecalis

+ Expressed successfully 186

Rec-pediocin 
with 
lactococcin 
A leader 
sequence

P. acidilactici pFI2391, pFI2436 L. lactis +
Nisin A inducible promoter and lactococcin A 
secretory apparatus

187
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Pediocin PA-1
P. acidilactici 
PAC 1.0

Yeast expression 
vector

Pichia pastoris 
KM71H

-
Rec-pediocin aggregated with “collagen-like” 
material, showed less hydrophobicity, an altered 
isoelectric point and no biological activity. 

193

Chimeras 
of pediocin 
PA-1, sakacin 
P, enterocin A, 
leucocin A and 
curvacin A.

P. acidilactici pMG36e L. sakei LB790 +

P32 promoter based expression, C-terminal 
domain of pediocin like bacteriocins is involved 
in specific recognition of the C-terminal part of 
cognate immunity protein and determines the 
antimicrobial spectrum.

190

Rec-pediocin 
PA-1 with 
Bifidobacterial 
a-amylase 
signal peptide

P. acidilactici
pPSAB 
(E. coli); pPSAB1 
(B. longum)

Bifidobacterium 
longum MG1

+

Strong antimicrobial activity in E. coli; approx. 
90% pPSAB1 stably maintained in B. longum MG1 
over 20 successive subculturings without an 
antibiotic stress

191

Pediocin PA-1 
fused with His 
tagged DHFR 
gene

P. acidilactici pQE40PED E. coli M15 +
Over expressed with IPTG and purified by Ni-NTA 
metal affinity chromatography and recovered by 
Factor Xa protease digestion

179

Trx-pediocin 
PA-1

P. acidilactici 
PAC1.0

E. coli +

Thioredoxin-pedA fusion protein lacked 
biological activity, but upon cleavage by an 
enterokinase gave biologically active pediocin 
PA-1 

180

6XHis-Xpress-
PedA

P. acidilactici K7
pTZ57R/T
subcloned in 
pRSET-A

E. coli BL21 (DE3) +

PT7 based expression, 8 to 10 times higher 
purification efficiency achieved with Ni-NTA 
affinity beads; refolded invitro using 5mM 
b-mercaptoethanol and 1M  glycine

181

Chimeric 
pediocin PA-1, 
enterocin A 
and other 
class IIa 
bacteriocins

P. acidilactici
DNA shuffled 
library

++

Mutant B1 inhibited a pediocin resistant L. lactis. 
Sequence analysis revealed novel N-terminal 
sequence TKYYGNGVSCTKSGC in strain B1 as 
compared to KYYGNGVTCGKHSC of pediocin 
PA-1

195

Pediocin PA-1 P. acidilactici K7
Shuttle vector 
pAMJ 

L. lactis MG1363 + P170 promoter based expression 188

Pediocin PA-1 
P. acidilactici 
347

Lactococcin 
A secretory 
apparatus

Lactococci +
Co-produciton of nisin and rec-pediocin PA-1 
(lcnA leader, propediocin under the control of 
lcnA secretory machinery)

189

made to clone potentially useful pediocins and till date, a num-
ber of research groups have reviewed their sources, produc-
tion, properties, genetic features, food industry applications, 
antimicrobial properties etc. [2, 64, 101, 173-177]. Pediocin PA-1 
has been cloned and expressed in several bacterial strains in-
cluding E. coli [40, 57, 168, 170, 178-181], L. lactis [178, 182-189], 
L. sakei [190], S.thermophilus [178, 186], E. faecalis [178, 186], P. 
acidilactici [168], B. longum [191], in baker’s yeast Saccharomyces 
cerevisiae [192] and in methylotrophic yeast Pichia pastoris [193].

Cloning and expression of pediocin  
in E. coli

E. coli is the organism of choice for production of rec-proteins, 
enabling the FDA approval of Eli Lilly’s recombinant insulin 
under the trade name Humulin® in 1982. Afterwards the num-
ber of US and European biopharmaceutical companies grew 
tremendously with their ever increasing number of approved 
recombinant products which were cultivated in E. coli systems. 
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The expanding choice of E. coli expression systems for achiev-
ing high level production of rec-proteins is empowered by fac-
tors such as voluminous knowledge of their physiological and 
biochemical properties, availability of genetically engineered 
E. coli strains that facilitate formation of correct disulphide 
bonds in the reducing environment of cytoplasm and yield 
high product with least proteolytic degradation. A plethora of 
protease deficient E. coli strains (all B strains including B834, 
BL21, BLR, OrigamiTM B, RosettaTM, TunerTM are deficient in 
lon and ompT proteases) have been developed with their well 
known codon usage, as rare codons in the cloned genes can 
have adverse outcome on levels of protein synthesis. E. coli 
BL21(DE3) is most widely exploited for heterologous gene ex-
pression in E. coli. BLR(DE3) is a recA- mutant of E. coli BL21(DE3) 
which is commonly used to express genes carrying repetitive 
sequences [196]. E. coli C41(DE3) and E. coli C43(DE3) are more 
promising to deal with membrane proteins than native host E. 
coli BL21(DE3). OrigamiTM B, RosettaTM and TunerTM strains are 
deficient in lacY permease which facilitates uniform entry of 
the IPTG inducer and allows a homogenous level of induction. 
E. coli strains AD494, AD494(DE3), BLRtrxB, BLRtrxB(DE3), Ori-
gami, OrigamiTM B and Rosetta-gamiTM have mutations in their 
glutathione reductase (gor) and thioredoxin reductase (trxB) 
genes and have been specially designed to support formation 
of correct disulfide bonds in rec-proteins [197, 198]. RosettaTM 
are engineered to supply rare tRNA for the codons AUA, AGA, 
AGG, CCC, CUA and GGA on a compatible chloramphenicol re-
sistant plasmid [199]. A very high-level expression is offered by 
a wide variety of tightly regulated prokaryotic promoters and 
expression systems (pT7Blue, pBlueStar, pRSFDuet, pSMART, 
pQE32, pQE40, pET32, pTZ57R/T, pRSET-A etc.). There has 
been a remarkable increase in the availability of fusion part-
ners (such as T7-tag, S-tag, His-tag, HSV-tag, Trx-tag, CBD-tag, 
GST-tag, Nus-tag, Dsb-tag etc.) with improved protein folding 
tools. Recombinant proteins could be secreted by tagging with 
highly specific sequence tags that facilitate their detection by 
affinity purification, immuno-fluorescence, immuno-precipita-
tion, western blotting. Extensive workout has been done on 
the mechanism of controlling gene expression and on obtain-
ing biological activity of the proteins in heterologous E. coli 
systems [200]. 

While designing the expression systems for pediocins, one 
should be very particular about the natural sensitivity of the 
LAB against bacteriocins produced by them. Producer organ-
isms have well developed defense machinery that protects the 
host from self secreted bacteriocins [40, 79, 201-204]. Thus, a 
need arises to co-express the pediocin immunity protein when 
production and secretion of the native pediocin is sought in 
heterologous strains. However, in some bacterial strains immu-
nity function of pedB is not required for expression of biologi-
cally active pediocin such examples are many strains of E. coli 
showing resistance to pediocins produced by Gram-positive 
Pediococcus species [40, 168]. Shuttle vector pHPS9 bearing 
pedA gene from P. acidilactici H has been introduced in E. coli 
χ925. In transformed minicells of E. coli χ925, only papA and 
papD are required for pediocin AcH production and secretion, 
as the recombinant cells are highly resistant to pediocin AcH. 

T5 promoter based expression system consisting of a Nova-
gen vector pQE32 has been used for expression of pediocin 
F of P. acidilactici F in E. coli. It was over expressed upon in-
duction with IPTG and his-tagged protein was extracted from 
cell lysates using Ni-NTA metal affinity chromatography [57]. 
Thioredoxin-pediocin PA-1 fusion protein has been expressed 
in E. coli. Fusion protein itself did not show any biological activ-
ity, but upon cleavage by an enterokinase, biologically active 
pediocin PA-1 was obtained [180]. In addition, four to five fold 
increases in production yield was obtained in comparison to 
pediocin PA-1 produced naturally by P. acidilactici PAC 1.0.

Expression of biologically active form of recombinant pedio-
cin in non-native organisms in a soluble form remains a bottle 
neck. It depends upon survival tendency, propagation and 
copy number of recombinant plasmid in transformed host, in 
addition to half life of the rec-protein in an altered environ-
ment and osmotic condition of the cytosol. It has been ob-
served that integral membrane proteins of E. coli could inter-
fere with growth and viability of the recombinant cells, when 
pediocin was over expressed [170]. To overcome this problem, 
papA was fused in-frame to secretary maltose binding protein 
(MBP) of E. coli and coned in malE vectors pPR682 and pIH82, 
whose efficient and powerful secretory signals directed very 
high level synthesis of MBP chimeric protein [170]. About one 
third of chimeric proteins were secreted into periplasm and 
released into the culture medium by periplasmic leaky E. coli 
E609L. However, a very high viability loss of >90% in recom-
binant E. coli E609L transformed with pIH821 and of 10% in E. 
coli E609L transformed with pPR682 was observed after 24h 
of IPTG induction.

Upon over-expression in heterologous systems, rec-proteins 
may tend to accumulate in inclusion bodies (IBs) of E. coli as 
a result of reducing conditions of the cytosol. To extract an 
intracellular protein it is necessary to disrupt the cells and sepa-
rate IBs [205]. IBs are subsequently washed and resolublized 
for proper folding of rec-proteins [206]. 6XHis-Xpress-pedA 
carrying pediocin structural gene from P. acidilactici K7 was 
cloned in pTZ57R/T [181]. It was further subcloned in pRSET-A 
for over expression in E. coli BL21(DE3). Recombinant pediocin 
was purified using Ni-NTA beads and eluted with 0.5M imidaz-
ole. In vitro refolding of rec-pediocin was carried out in redox 
system consisting of 5mM b-mercaptoethanol and 1M glycine 
to achieve its biological activity. 

The antimicrobial activity of the heterologous expressed 
pediocin varied from 0 to 10 fold depending on the expression 
system used. Osmanagaoglu et al. [57] successfully electro-
transformed E. coli JM109 cells with pHD1.0 bearing pediocin 
P structural gene from P. pentosaceus Pep1, but none of the 
transformant was able to express and/or release pediocin P. To 
overcome this, rec-pediocin was fused inframe with alpha-am-
ylase signal peptide of Bifidobacterium to construct plasmids 
pSAB and pSAB1 for transforming E. coli and B. longum MG1, 
respectively [191]. Recombinant E. coli showed strong antimi-
crobial activity, while 90% of pSAB1 was stably maintained in 
B. longum MG1 over 20 successive subculturings without an 
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antibiotic stress. Moon and coworkers [179] fused pedA with 
His-tagged DHFR in pQE40PED and transformed E. coli M15. 
Recombinants displayed very high pediocin activity upon 
overexpression with IPTG and subsequently fusion protein 
was purified by Ni-NTA affinity chromatography. Recovery of 
the native pediocin PA-1 from fusion product was achieved by 
digestion with Factor Xa protease. PT7 based expression sys-
tem offers 8 to 10 times higher yields with great purification 
efficiency achieved through Ni-NTA affinity beads [181]. 

Cloning and expression of pediocin in 
other microbial systems

Heterologous hosts including S. thermophilus, L. lactis subsp. 
lactis and E. faecalis have been demonstrated for their ability 
to express pediocin under p2201 and repA of shuttle vector 
PST [178]. The major limitation of these expression systems 
is the decreased stability (upto 10 subculturings only) of the 
cloned genes. A chimeric stretch consisting of lactococcin A 
promoter, lactococcin A leader sequence and pediocin PA-1 
structural gene has been introduced in pFI2058 for construct-
ing a recombinant plasmid which was used to transform L. 
lactis IL1403. Recombinant lactococcal strains displayed only 
25% pediocin activity. Thus, in an attempt to raise pediocin 
yields, additional copies of lcnC and lcnD were co-introduced in 
recombinant L. lactis IL1403. Using same recombinant pFI2058, 
a nisin producing L. lactis IF5876 was also transformed, where 
nisin and pediocin PA-1 were coexpressed successfully [183-
184]. PedA and pedB genes of pediocin operon from P. acidi-
lactici 347 have been successfully coexpressed with enterocin 
A in L. lactis IL1403 using plasmids pMG36c, pHB04 carrying 
P32 promoters, but resulting pediocin activity detected in 
recombinant cells was very low [185]. Rec-pediocin with lac-
tococcin A leader sequence was secreted by recombinant L. 
lactis bearing plasmids pFI2391, pFI2436 under nisin inducible 
promoters and lactococcin A secretory apparatus [187]. P170 
promoter based expression system has also been exploited for 
over-expression of rec-pediocin in L. lactis MG1363 using the 
shuttle vector pAMJ [188]. 

DNA shuffling technique has enabled construction of chimeric 
gene sequences carrying desirable traits. Chimeras of pediocin 
PA-1, sakacin P, enterocin A, leucocin A and curvacin A were 
generated by shuffling the genes of five different parental 

bacteriocins. Subsequent cloning of chimeric constructs in P32 
promoter based expression vector pMG36e was accomplished 
and recombinant L. sakei LB790 was generated [190]. Results 
indicated that some of the variants have dramatically more 
bacteriocin activity than their native bacteriocins. Results also 
highlighted the involvement of C-terminal domain of pediocin 
like bacteriocins in specific recognition of the cognate immu-
nity protein and determination of the antimicrobial spectrum 
of the secreted bacteriocin. 

Attempts have been made to express pediocin in yeast strains 
S. cerevisiae and P. pastoris, where active disulphide bond for-
mation can take place; however studies showed low levels of 
expression [192] and inhibition of its biological activity [193]. 
Aggregation of the rec-pediocin was observed in P. pastoris 
KM71H, due to its association with collagen-like material. These 
collagen-pediocin aggregates were less hydrophobic and be-
haved differently when subjected to isoelectric focusing. Rec-
pediocin lost its biological activity due to aggregation [193].

Conclusions

Though pediocin is an equally promising biopreservative as ni-
sin is, its indusrial scale production has not been taken up yet. 
The main reason is lack of a comparable scale of production. 
To improve its production heterologous systems have been 
studied which have used a variety of promoters for enhanced 
expression, secretory proteins for fusion and peptide tags to 
facilitate purification. Present review compiled the information 
available to date, giving variety of production enhancing strat-
egies for improving heterologous pediocin production. Apart 
from its biopreservative potential in foods, pediocin is an at-
tractive antimicrobial agent against many pathogenic bacteria 
and hence has pharmaceutic application too. As an additive to 
cosmetics its property to modulate skin microflora needs to be 
explored. Its probiotic potential in modulating gut microbiota 
towards cholesterol lowering, antidiabetic and antihyperten-
sive state promises to make it an important component of 
neutraceutic and wellness products. For all these applications 
either GRAS grade whole cells, over secreting copious amounts 
of pediocin or purified pediocin producted at industrial scale 
can be used. More research into production aspects is needed 
in near future.
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