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Effects of Long-Term, Low-Dose Macrolide 
Treatment on Pseudomonas aeruginosa 

PAO1 Virulence Factors In Vitro

Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a common cause of chronic airway 
infections	 in	patients	with	pulmonary	disorders	such	as	diffuse	panbronchiolitis	
(DPB)	 and	 cystic	 fibrosis	 (CF).	 Long-term,	 low-dose	 macrolide	 treatment	 has	
markedly	 increased	 long-term	 survival	 of	 patients	 with	 DPB.	 Consequently,	
researchers	are	interested	in	using	macrolides	to	treat	CF	patients.	Previous	studies	
have	demonstrated	that	macrolides	influence	P. aeruginosa virulence. However, 
most	 studies	 evaluated	 the	 regulatory	 effects	 of	 macrolides	 on	 P. aeruginosa 
virulence	factors	after	treatment	over	a	short	period	(<48	hours).	 In	this	study,	
we subcultured P. aeruginosa PAO1 for 2 to 18 months in the presence of low-
dose	 macrolides	 and	 evaluated	 antibiotic	 minimum	 inhibitory	 concentrations	
(MICs),	 bacterial	 growth,	 and	 virulence	 factors,	 including	 various	 motilities,	
biofilm	formation,	and	production	of	rhamnolipids,	total	protease,	elastase,	and	
pyocyanin.	 The	 production	of	many	 virulence	 factors	 gradually	 decreased	with	
macrolide	 exposure,	 and	 some	 were	 maximally	 affected	 after	 only	 2	 months.	
Despite	an	initial	inhibition	after	treatment	with	macrolides,	treated	bacteria	later	
exhibited	 increased	 biofilm	 formation	 compared	 to	 untreated	 controls.	 These	
findings	 suggest	 that	 low-dose	 macrolide	 therapy	 for	 chronic	 airway	 infection	
should	be	administered	for	at	least	2	months	to	achieve	optimal	effects	against	P. 
aeruginosa.
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Introduction 
Pseudomonas aeruginosa (P. aeruginosa),	 a	 ubiquitous	 Gram-
negative,	 rod-shaped	 bacterium,	 is	 an	 obligate	 aerobe	 with	
minimal	 nutritional	 requirements.	 It	 is	 often	 found	 in	 moist	
environments including soil, water, and sewage [1,2], and 
is	 an	 important	 opportunistic	 pathogen	 in	 humans,	 which	
primarily	 contributes	 to	 hospital-acquired	 bacterial	 infections	
in immunocompromised hosts [2-4]. Moreover, P. aeruginosa is 
not	only	the	leading	cause	of	chronic	lung	infections	in	patients	
with	 panbronchiolitis	 (DPB)	 and	 cystic	 fibrosis	 (CF),	 it	 is	 also	 a	
frequent	 cause	 of	 exacerbations	 in	 individuals	 with	 advanced	
chronic	obstructive	pulmonary	disease	(COPD)	[5].	P. aeruginosa 
has	 a	 high	 intrinsic	 resistance	 to	 most	 antibiotics	 [6,7]	 and	
possesses	a	large	array	of	virulence	factors,	such	as	flagella,	pili,	
lipopolysaccharide, the	formation	of	biofilms,	and	the	production	

of elastase, protease, and pyocyanin [8]. Repeated prolonged 
courses	 of	 broad-spectrum	 antibiotics	 lead	 to	 the	 selection	 of	
increasingly	antibiotic-tolerant	and	resistant	strains	[9].

DPB	is	a	chronic	infection	of	the	lower	respiratory	tract	common	
among the Japanese people, with a persistent P. aeruginosa 
infection	and	sustained	neutrophil	retention	in	the	airways	[10].	
In	addition,	DPB	was	an	inflammatory	disease	of	the	airways	with	
a	 high	 rate	 of	mortality	 despite	 treatment	with	 a	 combination	
of	antibiotics	and	the	use	of	supportive	therapy	such	as	oxygen	
administration	 [11].	 Recently,	 long-term,	 low-dose	 macrolide	
treatment for chronic P. aeruginosa	 respiratory	 infections	was	
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shown to alter the clinical course of DPB [11]. Macrolides are 
common	antibiotics	used	in	patients	with	respiratory	infections;	
however,	they	were	thought	to	have	weak	or	no	activity	against	
P. aeruginosa	since	the	maximum	concentrations	of	macrolides	in	
serum	and	sputum	are	below	minimum	inhibitory	concentrations	
(MICs)	and	fail	to	inhibit	the	proliferation	of	P. aeruginosa [12]. 
Nevertheless,	 the	 introduction	 of	 long-term	macrolide	 therapy	
for chronic P. aeruginosa	 airway	 infection	 in	DPB	 has	 resulted	
in	dramatic	improvements	in	survival,	with	5-year	survival	rates	
increasing from 63 to 92% [13].

Previous	studies	demonstrated	that	the	therapeutic	benefits	of	
macrolides against P. aeruginosa	 are	mediated	by	 inhibition	of	
adherence,	 production	 of	 virulence	 factors,	 and	 formation	 of	
biofilm,	 as	 well	 as	 inhibition	 of	 the	 quorum-sensing	 circuitry,	
which	 leads	 to	 reduced	 virulence	 factor	 production	 [14-17].	
However,	 most	 studies	 evaluated	 regulation	 of	 P. aeruginosa 
virulence	 factors	 after	 treatment	 with	 macrolides	 for	 a	 short	
period	(<48	hours),	there	have	been	no	report	that	investigating	
the	 effect	 of	 long-term,	 low-dose	 exposure	 of	 macrolide	
against P. aeruginosa.	In	this	study,	we	evaluated	P. aeruginosa 
subcultured for 2 to 18 months in the presence of low-dose 
macrolides	 to	 investigate	 the	 appropriate	 period	 of	 long-term,	
low-dose	 macrolide	 treatment;	 we	 investigated	 the	 effects	 of	
long-term	 exposure	 on	 MICs,	 bacterial	 growth,	 and	 virulence	
factors,	including	motility,	biofilm	formation,	and	production	of	
rhamnolipids, total protease, elastase, and pyocyanin.

Materials and Methods
Bacterial strains
In	 order	 to mimic long-term, low-dose macrolide treatment 
in vitro, erythromycin and clarithromycin, designated as the 
first	 or	 second-choice	 drug	 of	 DPB	 treatment,	were	 used	 [18]. 
We	 determined	 the	 appropriate	 macrolide	 concentration	 by	
referencing	the	maximum	drug	concentration	(Cmax)	at	the	time	
of	 oral	 administration	 in	 the	macrolide	 treatment	 studies	 [18-
20]. P. aeruginosa	 PAO1	was	 repeatedly	 subcultured	 76	 times	
over	18	months	on	Mueller-Hinton	agar	(BD	Diagnostics,	Sparks,	
MD,	 USA)	 containing	 1.6	 μg/mL	 erythromycin	 (Wako	 Pure	
Chemical	 Industries,	Osaka,	 Japan)	or	0.8	μg/mL	clarithromycin	
(LKT Laboratories, Saint Paul, MN, USA). P. aeruginosa PAO1 
that subcultured in the presence of low-dose macrolides were 
frozen at 2 month intervals, and we generated strains with 
long-term,	 low-dose	macrolide	 exposure	 (exposure	 time:	 2,	 4,	
6, 8, 10, 12, 14, 16 and 18 month). Non-exposure P. aeruginosa 
PAO1 (original strain) to macrolide was used as a strain with a 
macrolide exposure period of 0 month.

Bacterial growth assay
Aliquots	(20	μL)	of	bacterial	solutions	were	adjusted	to	1.5	×	107 
colony-forming	units	 (CFU)/mL	with	sterile	physiological	 saline,	
then	inoculated	into	6.0	mL	of	LB	broth	(BD	Diagnostics,	Sparks,	
MD, USA) and cultured with shaking (130 rpm) at 35°C for 24 
hours.	 10	μL	of	 the	 culture	 solution	were	diluted	 from	10-fold	
to 109-fold	at	two	hour	intervals,	and	each	dilution	(10	μL)	were	
plating	the	LB	agar	(BD	Diagnostics,	Sparks,	MD,	USA)	and	cultured	
overnight.	Bacterial	growth	was	determined	by	counting	CFU.

Antimicrobial susceptibility testing
Antimicrobial	 susceptibility	 of	 all	 P. aeruginosa strains was 
evaluated	by	microdilution,	 in	accordance	with	the	Clinical	and	
Laboratory	 Standards	 Institute	 (CLSI)	 M100-S25	 standard	 [21].	
MICs	were	determined	for	the	following	antibiotics:	ceftazidime	
(Tokyo	Chemical	Industry,	Tokyo,	Japan);	imipenem,	meropenem	
and clarithromycin (LKT Laboratories, Saint Paul, MN, USA.); and 
gentamicin,	 amikacin,	 erythromycin,	 and	 ciprofloxacin	 (Wako	
Pure	Chemical	Industries,	Osaka,	Japan).	

Motility assays
Swimming: P. aeruginosa	 (10	μL	aliquots	adjusted	 to	109	 CFU/
mL)	were	inoculated	in	the	center	of	swim	plates	(1.0%	(vol/vol)	
tryptone	 (Kanto	 Chemical,	 Tokyo,	 Japan),	 0.5%	 (vol/vol)	 NaCl	
(Wako	Pure	Chemical	 Industries,	Osaka,	 Japan),	 and	0.3%	agar	
(Kanto Chemical, Tokyo, Japan)), and incubated for 18 hours 
at	 30°C.	 Motility	 was	 assessed	 by	 observation	 of	 the	 circular	
turbid	zone	formed	by	bacteria	migrating	away	from	the	point	of	
inoculation	[22].

Swarming: A	10-μL	aliquot	of	the	inoculum	was	point-placed	on	
the agar surface of the semisolid swarming plate (0.8% Nutrient 
Broth	(BD	Diagnostics,	Sparks,	MD,	USA),	0.5%	(vol/vol)	glucose	
(Wako	Pure	Chemical	Industries,	Osaka,	Japan),	and	0.5%	agar),	
and the plates were incubated at 35°C for 24 hours. Bacterial 
halos	were	measured	as	an	indication	of	swarming	motility	[22].

Twitching motility: We	 used	 2.0%	 LB	 broth	 solidified	with	 1%	
agar for the twitching assays. Strains were stab-inoculated with 
a	 sharp	 sterile	 toothpick	 through	a	 thin	 LB	agar	 layer	 (1%,	wt/
vol),	 such	 that	 the	 toothpick	 reached	 the	bottom	of	 the	plate.	
After	incubation	for	48	hours	at	37°C,	a	hazy	zone	of	growth	at	
the	interface	between	the	agar	and	the	bottom	of	the	plate	was	
observed [22].

Rhamnolipid production assay
The	medium	 composition	 of	 the	 rhamnolipid	 plate	 was	 based	
on	M9	 salts	 [23]	 supplemented	with	 0.2%	 (vol/vol)	 glucose,	 2	
mM MgSO4	 (Kanto	 Chemical,	 Tokyo,	 Japan),	 0.0005%	 (vol/vol)	
methylene	blue	(Wako	Pure	Chemical	Industries,	Osaka,	Japan),	
0.02%	 (vol/vol)	 cetyltrimethylammonium	 bromide	 (Wako	 Pure	
Chemical	 Industries,	 Osaka,	 Japan),	 and	 trace	 elements,	 and	
solidified	 with	 2%	 agar.	 Glutamic	 acid	 (Wako	 Pure	 Chemical	
Industries,	Osaka,	Japan),	used	as	the	sole	nitrogen	source,	was	
added	to	a	final	concentration	of	0.05%.	Aliquots	of	the	bacterial	
solutions	 (20	 μL,	 adjusted	 to	 1.5	 ×	 107	 CFU/mL	 with	 sterile	
physiological saline) were inoculated into 6.0 mL of LB broth and 
cultured	with	shaking	at	35°C	for	18	hours.	We	inoculated	2	μL	
of	culture	solutions	into	rhamnolipid	plates,	which	were	cultured	
at	35°C	for	24	hours,	then	kept	for	72	hours	at	25°C	until	a	blue	
halo	appeared	around	the	colonies,	indicating	the	production	of	
rhamnolipids [24].

Biofilm formation assay
P. aeruginosa strains were grown in 5.0 mL of LB broth overnight 
at	35°C	with	shaking.	Aliquots	of	culture	solution	(180	μL,	adjusted	
to	1.5	×	107	CFU/mL	with	LB	broth)	were	inoculated	into	96-well	
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microtiter	 plates	 and	 cultured	 at	 35°C	 for 24 hours, then the 
microtiter	plates	were	stained	with	20	μL	of	1.0%	(wt/vol)	crystal	
violet (Kanto Chemical, Tokyo, Japan) for 10 minutes at room 
temperature	and	washed	five	times	with	PBS.	After	addition	of	
200	μL	of	95%	ethanol	to	each	well,	the	adsorbed	dye	was	quantified	
using	the	optical	density	(OD)	reading	at	570	nm	[25].

Total protease assay 
The total	 proteolytic	 activity	 of	 bacterial	 supernatants	 was	
determined with the Remazol Brilliant Blue R-Hide assay (Sigma-
Aldrich, Saint Louis, MO, USA), as previously described [26]. 
Briefly,	we	inoculated	20	μL	of	bacterial	solution	(adjusted	to	1.5	
×	107	CFU/mL)	into	6.0	mL	of	LB	broth,	which	was	incubated	with	
shaking	at	35°C	for	18	hours.	The	culture	solution	was	centrifuged	
at	 2300	 ×	g	 for	 15	minutes	 and	 the	 resulting	 supernatant	was	
sterilized	with	a	0.22-μm	filter	(Toyo	Roshi	Kaisha,	Tokyo,	Japan).	
Subsequently,	 2.0	mL	 of	 the	 culture	 supernatants	 was	 diluted	
with 1.0 mL of 10 mM Tris HCl, pH 7.5, and added to 3.0 mg of 
Remazol Brilliant Blue R-Hide. The mixture was incubated at 37°C 
for 1 hour with shaking. The absorbance of the supernatant was 
measured at 595	nm	to	determine	total	protease	activity.

Elastase assay
The	elastase	activity	of	bacterial	 supernatants	was	determined	
with	the	Elastin-Congo	Red	assay	(Sigma-Aldrich,	Saint	Louis,	MO,	
USA),	as	previously	described	[27].	An	aliquot	of	0.5	mL	of	culture	
supernatant was diluted 1 in 2 in 100 mM Tris HCl, pH 7.5, and 
added	to	10	mg	of	Elastin-Congo	red	substrate.	The	mixture	was	
incubated at 37°C for 6 hours with shaking. Undissolved substrate 
was	 removed	by	centrifugation	at	2300	×	g for 5 minutes. The 
absorbance of the supernatant was measured at 492 nm to 
determine	the	elastase	activity.

Pyocyanin assay
The pyocyanin assay was based upon the absorbance of excreted 
pyocyanin	in	acidic	solution	at	520	nm	[28].	A	3.0	mL	aliquot	of	
bacterial supernatant was mixed with 1.8 mL of chloroform and 

incubated at 25°C for 3 hours. The pyocyanin from the chloroform 
phase was extracted into 1.0 mL of 0.2 M HCl (Wako Pure 
Chemical	Industries,	Osaka,	Japan);	the	resulting	pink	to	deep	red	
color indicated the presence of pyocyanin. The absorbance was 
measured at 520 nm.

Result
Effects of long-term, low-dose macrolide 
treatment on MICs and bacterial growth
Long-term, low-dose macrolide treatment of P. aeruginosa PAO1 
had	no	effect	on	 the	MICs	of	 any	of	 the	antibiotics	used	 (data	
not shown). The results of the bacterial growth rate are shown in 
Figure 1.	Treatment	with	macrolides	did	not	affect	the	growth	of	
P. aeruginosa PAO1.

Correlation of virulence factors with macrolide
Although long-term, low-dose macrolide treatment did not alter 
the P. aeruginosa PAO1 swimming phenotype, it appeared to 
reduce	swarming	and	twitching	motility	(Figure 2). At all exposure 
durations	 tested,	 erythromycin	 decreased	 the	 swarming	 of	 P. 
aeruginosa PAO1 (Figure 2B). Clarithromycin decreased swarming 
of	 strains	 treated	 for	 2	 or	 more	 months.	 Twitching	 motility	
gradually decreased with longer periods of macrolide exposure 
(Figure 2C). As shown in Figure 3,	 rhamnolipid	 production	
decreased	with	longer	exposure	to	erythromycin.	Similar	findings	
were also obtained with P. aeruginosa PAO1 treated with long-
term, low-dose clarithromycin.

Total	 protease	 production	 decreased	with	 prolongation	 of	 the	
exposure period to erythromycin (Figure 4A).	 In	 the	 strains	
exposed to clarithromycin for up to 12 months, total protease 
production	was	equivalent	to	that	of	the	original	strain.	However,	
we	observed	a	decrease	in	the	production	of	total	protease	after	
14 months.

Elastase	 production	 also	 decreased	 with	 prolonged	 exposure	
to macrolides (Figure 4B).	 In	 addition,	 macrolide	 treatment	

Figure 1 Bacterial growth rate of PAO1 exposed to erythromycin (A) and clarithromycin (B). Symbols indicate length of exposure in months. 
Growth	curve	determinations	were	repeated	three	times	and	graphs	show	results	from	one	representative	experiment.
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decreased	 pyocyanin	 production	 in	 the	 P. aeruginosa PAO1 
strains treated for 2 or more months (Figure 4C).

Exposure to macrolides	 promoted	 biofilm	 formation	 after	 an	
initial	period	of	slight	inhibition	(Figure 5). Erythromycin exposure 
tended	to	inhibit	the	ability	of	PAO1	to	form	biofilms	until	the	6	
month,	after	which	 it	 increasingly	promoted	biofilm	formation.	
Similarly,	 biofilm	 formation	 was	 inhibited	 by	 clarithromycin	
exposure	 until	month	 12,	 after	which	 the	 formation	 increased	
with the exposure period.

Discussion
In	 this	 study,	 we	 investigated	 the	 time-dependent	 effects	 of	
low-dose macrolide treatment on several P. aeruginosa PAO1 
characteristics.	 Many	 studies	 have	 previously	 reported	 the	
effects	of	macrolides	on	P. aeruginosa [14-17]. However, those 
studies examined P. aeruginosa	 after	 short-term	 macrolide	
exposure	in	vitro,	and	there	have	been	no	reports	on	the	time-
dependent	effects	of	 long-term	macrolide	exposure.	Therefore,	
we	investigated	changes	in	P. aeruginosa PAO1 virulence factors 
after	long-term	subculture	on	agar	plates	containing	macrolides.

We found that long-term macrolide exposure did not change the 
MICs	 of	 the	 antibiotics	 tested.	 Similarly,	 bacterial	 growth	 rate	
was also unchanged, consistent with the results of short-term 
macrolide exposure [29]. These results suggest that macrolides 
do not	mediate	direct	antibacterial	activity	against	P. aeruginosa.

Figure 2 Motility	such	as	swimming	(A),	swarming	(B),	and	twitching	(C)	of	PAO1	exposed	to	erythromycin	(○)	and	clarithromycin	(■). Results are 
normalized to PAO1 with no macrolide exposure (original strain), and graphs display mean ±  SD of three independent experiments.
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Figure  3 Rhamnolipid	 production	 by	 PAO1	 exposed	 to	
erythromycin	(○)	and	clarithromycin	(■). Results were 
normalized to PAO1 with no macrolide exposure 
(original strain), and graphs display mean ±  SD of three 
independent experiments.

1 2 0

1 0 0

8 0

6 0

4 0

2 0

0
0          2          4          6           8         10        12         14        16        18

E x p o s u r e  p e r i o d  ( m o n t h )

D
ia

m
et

er
 (

%
 o

ri
gi

na
l 

st
ra

in
)



2017
Vol. 8 No. 4:50

ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436

5© Under License of Creative Commons Attribution 3.0 License         

Figure  4 Virulence	factors	such	as	total	protease	(A),	elastase	(B),	and	pyocyanin	(C)	of	PAO1	exposed	to	erythromycin	(○)	and	clarithromycin	
(■). Results were normalized to PAO1 with no macrolide exposure (original strain), and graphs display mean ± SD of three independent 
experiments.

1 4 0

1 2 0

1 0 0

8 0

6 0

4 0

2 0

0
0          2          4          6          8         10        12        14         16        18

1 4 0

1 2 0

1 0 0

8 0

6 0

4 0

2 0

0

1 4 0

1 2 0

1 0 0

8 0

6 0

4 0

2 0

0
0          2          4          6          8          10        12        14         16        18 0          2          4          6          8          10        12        14         16        18

Exposure period (month)

Exposure period (month) Exposure period (month)

A B

C

O
 D

52
0 

(%
 o

ri
gi

na
l s

tr
ai

n)
O

 D
59

5 
(%

 o
ri

gi
na

l s
tr

ai
n)

O
 D

49
2 

(%
 o

ri
gi

na
l s

tr
ai

n)
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On the	 other	 hand,	 multiple	 virulence	 factors	 were	 inhibited	
in	 a	 time-dependent	 manner.	 The	 inhibition	 of	 swarming	 and	

twitching were consistent with the results of short-term macrolide 
exposure [1,30]. Swarming and twitching are involved in surface 
motility,	bacterial	adhesion,	and	microcolony	formation	[31,32].	
It	has	been	suggested	that	inhibition	of	swarming	and	twitching	
may	 gradually	 reduce	 these	 functions.	 In	 addition,	 we	 also	
observed	inhibition	of	the	production	of	rhamnolipids,	biological	
surfactants associated with swarming [33], which is consistent 
with the report that culture on plates containing macrolides 
inhibited	rhamnolipid	production	[17].	Our	results	suggest	 that	
inhibition	of	rhamnolipid	production	may	be	involved	in	the	time-
dependent	inhibition	of	swarming.	Similarly,	we	confirmed	that	
virulence factors such as total protease, elastase, and pyocyanin 
were	 inhibited	 in	 a	 time-dependent	 fashion.	 The	 observed	
inhibition	 of	 virulence	 factors	 was	 consistent	 with	 previous	
reports	 about	 the	 effects	 of	 short-term	 macrolide	 exposure	
[14,15]. Long-term macrolide exposure may gradually reduce 
the pathogenicity of P. aeruginosa	via	time-dependent	inhibition	
of	 multiple	 virulence	 factors.	 As	 for	 the	 treatment	 period	 of	
macrolide long-term, low-dose therapy is recommended 2 years 
in Japan's guidelines [18]. However, there were few reports 
supporting	 appropriate	 treatment	 period	 of	macrolide	 therapy	
in vitro or in vivo. The results of our research suggest that low-
dose	macrolide	 therapy	 for	 chronic	 airway	 infection	 should	 be	
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