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Abstract

Endothelial dysfunction is regarded as an important factor
in the pathogenesis of diabetes. Endothelial dysfunction
has been posited to play an important role in the
pathogenesis of diabetic nephropathy (DN).

The vascular complications of diabetes impose a huge
burden on the management of this disease. The higher
incidence of cardiovascular complications and the
unfavorable prognosis among diabetic individuals who
develop such complications have been correlated to the
hyperglycemia-induced oxidative stress and associated
endothelial dysfunction. Both hyperglycemia, as well as
the metabolic consequences of glucose dysregulation, are
thought to lead to endothelial cell dysfunction. In this
regard, endothelial nitric oxide synthase (eNOS) plays a
central role in dysfunction. This review will focus on the
mechanisms and therapeutics that specifically target
endothelial dysfunction in the context of a diabetic
setting.
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Introduction

An epidemic of diabetic nephropathy
Diabetic nephropathy (DN) is a leading cause of mortality

and morbidity in patients with diabetes. It is the single major
cause of renal failure in many countries. This complication
reflects a complex pathophysiology, whereby various genetic
and environmental factors determine susceptibility and
progression to end-stage renal disease. End-stage renal
disease (ESRD) due to diabetes has been estimated to be
30-47% of all incident cases worldwide [1]. Disparities in the
incidence of ESRD from diabetes among ethnic groups have
existed for many years, but the magnitude has been
increasing. The World Health Organization (WHO) has

estimated that there are currently 346 million people affected
by diabetes worldwide and anticipates that diabetes-related
deaths would double by 2030 [2]. These figures highlight the
importance of continued research and the need for novel
methods to both prevent and treat this pandemic [3].

There is compelling evidence that endothelial dysfunction
serves as a key event in the development and progression of
diabetic vascular complications, including nephropathy [4-6].
Endothelial cells maintain vascular function and homeostasis
by generating paracrine factors that regulate vascular tone,
preventing coagulation and platelet aggregation, inhibiting
adhesion of leukocytes, and limiting proliferation of vascular
smooth muscle cells as well as by constituting a selective
barrier to the diffusion of macromolecules into the interstitial
space. Further, it was shown that Nitric Oxide (NO) produced
by endothelial cells through the endothelial Nitric Oxide
Synthase (eNOS) plays a major role for many of these
endothelial functions [5] and that decreased NO production
and bioavailability largely contribute to endothelial
dysfunction in diabetes [6].

The endothelium
Endothelium is a type of epithelium that lines the interior

surface of blood vessels and lymphatic vessels. Vascular
endothelium is an innermost layer of blood vessels responsible
for regulation of vascular tone and free flow of blood in vessels
[7].

The multiple functions of vascular endothelium are
summarized in Figure 1 and include regulation of vessel
integrity, vascular growth and remodeling, tissue growth and
metabolism, immune responses, cell adhesion, angiogenesis,
hemostasis and vascular permeability. The endothelium plays a
pivotal role in the regulation of vascular tone, controlling
tissue blood flow and inflammatory responses and maintaining
blood fluidity [8,9].

Vascular endothelium is the inner layer of the blood vessels,
which serves as an important role to regulate the vascular
functions and blood flow in vessels [7].

Vascular endothelium maintains the vascular tone and
exerts anticoagulant, antithrombotic, antiplatelet and
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fibrinolytic properties [10]. Endothelium is a multifunctional
organ and it control the release of endothelium derived
relaxing factors (EDRF), endothelium derived contracting
factors (EDCF), endothelium derived hyperpolarizing factors
(EDHF) [11,12] inflammatory mediators such as intracellular

adhesion molecule-1 (ICAM-1), vascular cell adhesion
molecule-1 (VCAM-1), nuclear factor kappa-B (NF-kB) and
various growth factors like vascular endothelial growth factors
(VEGF) and transforming growth factor-β (TGF-β) [4,11].

Figure 1: Functions of vascular endothelium.

Nitric oxide
Nitric oxide is a small gaseous and lipophilic molecule that

participates of several biological processes. It is synthesized
from Endothelial NOS (eNOS), also known as nitric oxide
synthase 3 (NOS3) or constitutive NOS (cNOS), is an enzyme
that in humans is encoded by the NOS3 gene located in the
7q35-7q36 region of chromosome 7 [13]. Nitric oxide (NO) is
an important protective molecule in the vasculature, and
endothelial NO synthase (eNOS) is responsible for most of the
vascular NO produced.

eNOS has a protective function in the cardiovascular and
renal system, which is attributed to NO production.

Regulation of the vascular tone: Once the nitric oxide
diffuses from the endothelial cells, it activates the enzyme
soluble guanylate cyclase (sGC), which catalyses the
conversion of guanosine triphosphate into cyclic guanosine
monophosphate (cGMP) which in turn activates protein kinase
G (PKG) and promotes the phosphorylation of cellular targets
and promotes the vascular relaxation.

Antiproliferative property: NO exerts antiproliferative
effects by cGMP-dependent inhibiting Ca2+ influx or by directly
inhibiting the activity of arginase and ornithine decarboxylase,
decreasing the generation of polyamides required for DNA
synthesis [14,15].

Antithrombotic effects: Nitric oxide exerts antithromic
effects by diffusing across the platelet membrane and resulting
in inhibition of platelet aggregation.

Leukocyte adhesion: Nitric oxide (NO) is a biologically active
compound produced by vascular endothelium and is rapidly
inactivated by superoxide. There is circumstantial evidence in
the literature that NO may interfere with the ability of
polymorphonuclear leukocytes to adhere to microvascular
endothelium [16]. It is well established that NO prevents the
adhesion of platelets to endothelial monolayers. Additionally,
NO inhibits neutrophil aggregation in vitro, an effect that is
potentiated by superoxide dismutase. Moreover, NO affects
leukocyte adhesion to the vascular endothelium by inhibiting
the nuclear factor kappa B (NF-κB), which induces vascular
endothelial expression of chemokines and adhesion molecules
[17,18].

Attributable to up-regulation of heme-oxygenase-I and
ferritin expression, which reduce superoxide anion
concentrations in blood vessels [19].

Vascular endothelial dysfunction
In patients with diabetes, endothelial dysfunction appears

to be a consistent finding; indeed, there is general agreement
that hyperglycemia and diabetes lead to an impairment of NO
production and activity. Endothelial dysfunction is a systemic
pathological condition which can be broadly defined as an
imbalance between vasodilating and vasoconstricting
substances produced by the endothelium or overall functions
of the endothelium [20]. Normal functions of endothelial cells
include production of nitric oxide (NO), regulation of platelet
adhesion, coagulation, immune function, control of volume,
and electrolyte content of the intravascular and extravascular
spaces [21,22]. Endothelial dysfunction is primarily due to
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reduction in NO bioavailability, and a marker for vascular
health. Endothelial dysfunction can result from and/or
contribute to several disease processes, as occurs in diabetes
mellitus, hypercholesterolemia and hypertension, and also due
to environmental factors, such as smoking tobacco products
and exposure to air pollution [23-25].

Additionally, endothelial dysfunction is characterized by one
or more of the following features: reduced endothelium-
mediated vasorelaxation, hemodynamic deregulation,
impaired fibrinolytic ability, enhanced turnover,
overproduction of growth factors, increased expression of
adhesion molecules and inflammatory genes, excessive
generation of ROS, increased oxidative stress, and enhanced
permeability of the cell layer [26,27].

Vascular endothelial dysfunction cause reduced activation
of endothelial nitric oxide synthase, decreased generation and
bioavailability of nitric oxide (NO). VED leads to increase in
production of reactive oxygen species (ROS) and
proinflammatory mediators are implicated in pathogenesis of
various disorders like hypertension, atherosclerosis and
diabetic nephropathy [28-30].

Diabetic nephropathy and vascular endothelial
dysfunction

Hyperglycemia causes vascular endothelial dysfunction via
micro and macrovascular complications [31]. Diabetic
nephropathy is defined as partial loss of nephrons followed by
nephrotic syndrome and glomerulosclerosis. Nephropathy is
characterized by persistent elevated albuminuria, declined
glomerular filtration rate, and elevated arterial blood pressure
and oedema [32,33]. Although several other factors may
mediate in the development and progression of diabetic
nephropathy.

Insulin resistance usually precedes the development of Type
II diabetes and is often accompanied by a cluster of
cardiovascular risk factors, notably obesity, hypertension, high
triacylglycerol (triglyceride) levels, low HDL (high-density
lipoprotein)-cholesterol levels, abnormal LDL composition,
hyperinsulinaemia, insulin resistance and inflammation, all of
these impair endothelial function. Hyperglycemia is the major
causal factor in the development of endothelial dysfunction in
diabetes mellitus [30].

Diabetes mellitus (DM) is a complex metabolic syndrome
characterized by absolute insulin deficiency or development of
insulin resistance that leads to altered glucose, fat and protein
metabolism [34]. Retinopathy, neuropathy, cardiomyopathy,
and nephropathy are long term complications due to diabetes
mellitus and endothelial nitric oxide synthase imbalance. Both
genetic and environmental factors are involved in the
development of endothelial dysfunction during DN [35].

High concentration of glucose has been noted to scavenge
nitric oxide and induce vascular endothelial dysfunction finally
leads to diabetic nephropathy [36] which is followed by
formation of advance glycation end-products (AGEs), reactive

oxygen species (ROS) and increase in the oxidative stress
[37,38].

Nevertheless, there is no doubt that chronic hyperglycemia
and the subsequent metabolic derangements play a major role
in diabetic EC injury and can lead to the over production of
advanced glycation end products (AGE), activated protein
kinase C (PKC) signaling cascades and accumulated reactive
oxygen species (ROS) [39]. Hemodynamic alterations along
with renin-angiotensin system (RAS) regulation seem to be
another pivotal contributor to dysfunction of renal
endothelium in both glomerular afferent and efferent arteries
[40].

Diabetic nephropathy which is characterized by glomerular
hypertrophy, accumulation of extracellular matrix protein,
increased basement membrane thickness, mesangial
expansion, podocyte loss, and vascular endothelial dysfunction
progressively leading to glomerulosclerosis, tubulointerstitial
fibrosis, and proteinuria [41].

It has been noted in various studies that hyperglycemia
induce endothelium cell death by activating bax-caspase
proteases pathway [42].

Further, diabetic nephropathy is associated with activation
of various intracellular signaling mechanisms and transcription
factors, i.e. protein kinase C (PKC), mitogen activated protein
kinase (MAPKs), nuclear factor kappa B (NFκB) [43].
Furthermore, overexpression of various growth factors, i.e.
transforming growth factor (TGF-β), vascular endothelial
growth factor (VEGF), and cytokines, i.e. tumor necrosis factor
a (TNF-α), interleukin 1 (IL1), and insulin-like growth factor-1
(IGF-1), stimulates proliferation of mesangial cells contributing
to glomerulosclerosis and tubulointerstitial fibrosis [44].

Various endogenous modulators such as Ang-II, ET-I,
caveolin, resistin and Rho-kinase are upregulated in VED
[45,46] whereas adiponectin and apelin are downregulated in
VED [47]. Ang-II stimulates the release of VEGF and develops
proteinuria in diabetic nephropathy [45].

The experimental evidences suggests that hyperlipidemia
may mediate renal injury by increasing the expression of sterol
regulatory element-binding protein (SREBP), which is
responsible for increasing the synthesis of triglycerides and
cholesterol in the kidney, that are associated with increased
expression of TGF-β, VEGF, extracellular matrix proteins, type
IV collagen and fibronectin resulting in glomerular
hypertrophy. Further, SREBP stimulates podocyte injury,
glomerulosclerosis and tubulointerstitial fibrosis to produce
nephropathy [48,49].

In addition, diabetes upregulates the generation of AGEs,
which contributes to endothelial cell death and vascular
endothelial dysfunction [50]. Moreover, the expression and
activity of eNOS is down regulated through glucose mediated
production of reactive oxygen species (ROS) in diabetes [51].
The ROS thus generated during diabetes play a major role in
the pathogenesis of diabetic nephropathy [52]
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Oxidative stress and endothelial cell
dysfunction

Oxidative stress describes the condition wherein an
excessive production of ROS overwhelms endogenous
antioxidant defense mechanisms. Oxidative stress is caused by
three factors: (1) an increase in oxidant generation, (2) a
decrease in antioxidant protection, (3) a failure to repair
oxidative damage [53-55]. There are numerous risk factors
that can cause endothelial cell damage under diabetes such as
hyperglycemia, insulin resistance, dyslipidemia, increased
oxidative stress, inflammation, and hypertension [56,57].

The vascular endothelium, which regulates the passage of
macromolecules and circulating cells from blood to tissues, is a
major target of oxidative stress, playing a critical role in the
pathophysiology of several vascular diseases and disorders
[58]. Specifically, oxidative stress increases vascular
endothelial permeability and promotes leukocyte adhesion,
which is coupled with alterations in endothelial signal
transduction and redox-regulated transcription factors [59].

Endothelial dysfunction is associated with decreased NO
availability, either through loss of NO production or through
loss of NO biological activity [60]. NO production is diminished
in cells which are subject to oxidative stress. Hyperglycemia-
induced eNOS impairment leads to increased oxidative stress
and scavenging of NO, which represents initiation event(s) for
development of endothelial dysfunction [61].

A decline in NO bioavailability may be caused by decreased
expression of the endothelial cell NO synthase (eNOS), a lack
of substrate or cofactors for eNOS, alterations of cellular
signaling such that eNOS is not appropriately activated and
finally accelerate NO degradation by ROS [62-65].

The imbalance between NO and reactive oxygen species
(ROS) generation is a central pathophysiologic denominator in
diabetic endothelial dysfunction. High glucose increases ROS
production in ECs [66] and reduces endogenous antioxidant
systems [67] resulting in oxidative stress.

It is known that under diabetic conditions there are
increased oxidative stress levels [68]. Increased ROS prompts
the EPCs to produce pathologic cytokines such as monocyte
chemoattractant protein-1 (MCP-1), tumor necrosis factor-α
(TNF-α), NF-κB, interleukin-8 (IL-8), elevated levels of iNOS,
and decreased eNOS. Diabetes which is a metabolic disorder
characterized by impaired endogenous insulin secretion and
activity, reduced NO production and increased production of
free radicals, or impaired antioxidant defenses. The
predominant factor in diabetes-mediated complications is
endothelial dysfunction. The mechanisms that lead to
endothelial dysfunction in diabetes are complex [69,70].

Both endothelial cells and vascular smooth muscle cells are
capable of producing reactive oxygen species from a variety of
enzymatic sources. In disease states such as diabetes, vascular
production of reactive oxygen metabolites can increase
substantially [68]. Increased production of the superoxide
anion can lead to decreased tissue bioavailability of nitric
oxide (NO) via a facile radical/radical reaction that occurs more

rapidly than the reaction of with superoxide dismutase (SOD)
[71]. This phenomenon alters endothelial regulation in a
variety of disease conditions. Importantly, this endothelial
dysfunction is due to vascular production of superoxide. There
are several enzymes that involve generating ROS such as
NADPH oxidase, aldehyde oxidase, xanthine oxidase, and
glucose oxidase [68]. Decreased endothelium-dependent
vasodilation in diabetic subjects is associated with the
impaired action of NO secondary to its inactivation resulting
from increased oxidative stress, rather than decreased NO
production from vascular endothelium and that abnormal NO
metabolism is related to advanced diabetic microvascular
complications [72].

Potential Therapeutic Strategies
The risk of cardiovascular death in diabetic patients with

microalbuminuria is some 7-40 times that of an age matched
general population. Lifestyle changes are required to prevent
the onset of diabetes. They include cessation of smoking and
require regular exercise, weight loss and controlled sodium
intake.

Glycemic control and Renin Angiotensin Aldosterone system
(RAAS) inhibition have long been mainstays of therapy in
patients with diabetic nephropathy [73].

The natriuretic peptides (NPs), which are secreted from
cardiomyocytes in response to cardiac wall stress, play an
important role in the regulation of blood pressure,
intravascular volume, and cardiac remodeling. The NPs
consists of atrial natriuretic peptide (ANP), brain natriuretic
peptide (BNP) and C type natriuretic peptide, where ANP and
BNP are secreted by the heart in response to increased volume
and pressure load [74].

Natriuretic peptides are mainly involved in water and
sodium balance and cardiovascular homeostasis, several
neurohormones such as endothelin-1 (ET-1), Catecholamines
stimulate the secretion of natriuretic peptides [75,76]. The
effects of ANP are mediated by the transmembrane guanylyl-
cyclase receptor type A, which promotes intracellular cGMP
formation [77].

Administration of ANP drugs (5 µg/kg/i.p.) and (10 µg/kg/
i.p.) inhibit the renin-angiotensin II-aldosterone system [78].

Diabetic nephropathy is a potentially fatal endpoint of
uncontrolled diabetes. Reduced level of nitric oxide is most
negative factor involved in diabetic nephropathy. In
hyperglycemia due to up regulation of endothelial dysfunction
mediators such as Ang-II, Endothelin-I, Caveolin are actively
involved in diabetic nephropathy [79].

Regarding the endothelial dysfunction, Single therapy may
not adequately improve endothelial function, so it is necessary
to target multiple factors for therapeutic intervention of
endothelial dysfunction. Targeting more than one risk factor of
endothelial damage only can improve endothelial functions.

Treatments that improve endothelial function systemically,
like ACE inhibitors, statins, metformin, antioxidants, folate,
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PKC-inhibitors, and supplements like L-arginine, BH4, folic acid,
and polyphenols also appear to provide protection from
diabetes mediated vascular events [80].
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