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Epileptic Seizure: A New Approach for 
Quantification of Autonomic Deregulation 

with Chaos Based Technique

Abstract
Background: Epileptic seizures can lead to changes in autonomic function 
affecting the sympathetic, parasympathetic and enteric nervous systems. 
Changes in cardiac signals are potential biomarkers that may provide an extra-
cerebral indicator of ictal onset in some patients. Patients suffering from epilepsy 
experience some significant cardiac changes during seizure, causing some serious 
cardiac malfunctions which may lead to sudden unexpected death (SUDEP). The 
fluctuations observed in the heart rate during the process are non-linear and 
extremely complex. Chaos based non-linear methodology has become a very 
powerful tool in recent years in analysing such complex systems. Although a few 
papers on effect of seizure have been reported where study was done to assess the 
dynamics of cardiac systems for post-ictal patients not using non-linear technique, 
this paper reports the analysis of ECG signals of post-ictal patients using a modern 
and rigorous non-linear technique.

Methods and findings: Multifractal detrended fluctuation analysis (MFDFA) 
technique has been applied here to determine the degree of multifractality of 
cardiac dynamics quantitatively of five women patients suffering from partial 
seizures. The analysis of the ECG clinical data obtained from ‘PhysioNet’ database 
shows that the degree of multifractality or complexity for each subject is different 
indicating the difference of severity of occurrences of seizure.

Conclusion: The study reveals that the degree of autonomic deregulation can be 
quantified with the help of two parameters, the multifractal width and the auto-
correlation exponent.

Keywords: Epilepsy; Electrocardiograph; Non-stationary time series; Multifractality; 
Multifractal width; Auto-correlation coefficient
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Introduction
Heart is one of the most important organs of human being. An 
electrocardiograph (ECG) is a bioelectrical signal which records the 
heart's electrical activity versus time. It is an important diagnostic 
tool for assessing heart functions [1]. Heart rhythm disorders, 
known as arrhythmias, present abnormal electrical activities 
due to cardiovascular diseases [2]. Cardiovascular disease is one 
of the major causes of death in the world. Rapid arrhythmias 
(greater than 100 beats per minute) are called tachycardias. 
Slow arrhythmias (slower than 60 beats per minute) are called 
bradycardias. Irregular heart rhythms are called fibrillations (as 
in atrial fibrillation and ventricular fibrillation) [1]. 

Epilepsy is one of the most common neurological disorders, 
second only to stroke, with a prevalence of 0.6% to 0.8% of the 
world's population [3]. Electroencephalograms (EEGs) and brain 
scans are common diagnostic test for epilepsy [4]. Epileptic 
seizures may be associated with autonomic deregulation 
manifesting, for example, blood pressure (BP) and heart rate 
(HR) changes [5]. Depending on the region of the brain that is 
compromised during seizures, acute changes in heart rate and/
or respiration can be seen. Besides the respiratory effects, such 
as apnoea, complex-partial seizures (CP) seem to affect the heart 
rate either through tachycardia or bradycardia, which in turn 
might be related to sudden unexplained death [6].
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The widespread cardiac effects of epilepsy may range from 
minute changes in heart rate variability (HRV) to ictal sinus arrest. 
HRV reflects the beat-to-beat alterations in the HR and is mainly 
modulated by parasympathetic and sympathetic activity. HRV 
can be used as a tool to show information on the functional state 
of the autonomic nervous system. HRV is a mirror of neuronal 
influences on the cardiac pacemaker as one of the important 
functions of the autonomic nervous system. It is found to be lower 
with refractory epilepsy, possibly resulting from parasympathetic 
or vagal reduction. This can make patients more susceptible to 
tachycardia and fibrillation and possibly sudden unexpected 
death (SUDEP) [7]. With the advent of simultaneous EEG and 
ECG recording, different types of ictal cardiac dysrhythmia have 
been reported, and this has given some insight about a possible 
mechanism for SUDEP [8]. 

Analysis of ECG signal of epileptic patients having seizure has 
been reported by a several researchers. Al-Aweel et al. [9] used 
post-ictal heart rate data of a heterogeneous group of patients 
with partial epilepsy and they observed ‘this pattern is marked by 
the appearance of transient but prominent low-frequency heart 
rate oscillations (0.01 Hz to 0.1 Hz) immediately following five of 
11 seizures recorded in 5 patients’ and remarked that ‘this finding 
may be a marker of neuro-autonomic instability, and, therefore, 
may have implications for understanding perturbations of heart 
rate control associated with partial seizures’. Later, analyzing the 
same dataset Amaranth [10] described ‘the implementation of 
power spectral density (PSD) technique to analyze ECG recording 
of post-ictal heart rate oscillations in partial epilepsy’. Zijlmans et 
al. [11] observed some ECG abnormalities in the pre-ictal period 
of partial and generalized seizures such as T wave inversion and 
ST elevation/depression. Leutmezer et al. [12] and Elmpt et al. 
[13] modelled heart rate signal using curve fitting methodology 
to detect seizure onset from ECG signals. Wong et al. [14] 
investigated ECG signals in a first seizure clinic and found a close 
cooperation between cardiology and neurology. Surges et al. [15] 
showed the QT interval to be shortened during the early post-
ictal phase in patients suffering from refractory temporal lobe 
epilepsy. Many more studies have been reported where both 
pre-ictal and post-ictal studies have been done on ECG signals 
with a motivation of extracting relevant important information 
[1,16-19]. Jansen et al. [20] reported changes in heart rate in 
temporal-lobe and frontal-lobe seizures in childhood epilepsy. 
Varon et al. [21] proposed the necessity of development of 
user friendly warning systems to improve the quality of life of 
patients suffering from epileptic seizures from the respective 
changes in heart rate during the pre-ictal, ictal and post-ictal 
phases. Van der Kruijs et al. [22] investigated the autonomic 
nervous system functioning with epileptic seizures in pre-ictal 
time course of HRV. In a recent study Varon et al. [23] have also 
suggested seizures to effect autonomic control of heart rate 
and respiration. They studied ECG signals of patients suffering 
from focal and generalized seizures proposing two algorithms 
namely, principal component analysis and phase rectifying signal 
averaging to quantify morphology changes in QRS and cardio 
respiratory interactions respectively. 

Kolsal et al. [24] have reported a study on heart rate variability 
in children with epilepsy to predict seizure. The finding of Kolsal 
et al. [24] is interesting but the technique that has been used 
for analysis is the conventional linear technique which has been 
challenged for quite some time for non-stationary signals. Any 
signal, the spectrum may cover wide range of frequencies and 
conventional time and frequency domain analysis techniques 
based on the linear fluctuation of heart rate is insufficient to 
outline the changes in heart rate dynamics [25-36]. To quantify 
this, nonlinear dynamics based methods such as fractal analysis 
and chaos theory have been introduced [37-39]. These techniques 
have quite successfully been implemented on HR signals and 
provided significant clinical information on cardiac diseases [40-
45], but are yet to be used on a few more fields like evaluation of 
autonomic cardiovascular dysfunction in epilepsy etc.

Long-term memory-like structures are characterized by the 
amplitudes of the frequency (f) spectrum following a scale 
free power-law relationship of 1/f. Cardiac time series exhibits 
similar character where the long-range correlations indicate 
that, normally the fluctuations on one scale are self-similar to 
those on other scales [46]. Assuming the scaling properties were 
homogeneous throughout the entire signal, cardiac time series 
were treated as monofractal signals [47-54]. With advancement 
in analysis techniques, later it was revealed that the behavior 
of cardiac time series could not be adequately quantified by a 
single scaling parameter since it is far more inhomogeneous and 
non-stationary which is a clear indication that the dynamics of HR 
fluctuations has a higher level of multiscale complexity. That led 
to application of multi-exponent multi-fractal analysis on cardiac 
time series of normal subjects, patients with cardiac disease and 
also study of mice [52,53,55-58]. 

Numerous EEG studies demonstrate its nonlinear and non-
stationary character [59-62]. Like EEG, ECG signals are also 
nonlinear and non-stationary [63-70]. Ivanov et al. [71] reported 
healthy human interbeat intervals to exhibit multifractal 
properties. Amaral et al. [72] also reported the multifractal 
behavior of HRV. Wang et al. [73] too analyzed ECG signals of 
healthy young adult subjects and old ones and characterized 
their multifractality.

In recent years, complex systems-natural or man-made are 
being studied applying rigorous chaos based nonlinear methods. 
EEG, ECG and EMG signals are examples of such systems which 
have been studied and reported in the light of this nonlinear 
methodology [74-77]. Unfortunately utilizing the state of the 
art methods of nonlinearity, ECG signals had not been studied in 
detail except by Jiang et al. [78], where ECG signals were studied 
applying visibility graph methods. But there also no quantitative 
assessment on the change of ECG patterns due to meditation 
had been analyzed. In an earlier work, Dutta, et al. [79] applied 
multifractal detrended fluctuation analysis (MFDFA) to human 
EEG for normal and epileptic patients in different physiological 
and pathological states. The results showed that the degree of 
multifractality of EEG for patients in an epileptic seizure were 
much higher compared to normal healthy people. Significant 
difference was also found in the degree of multifractality for 
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Method of Analysis
We have performed a multifractal analysis of the ECG recordings 
of post-ictal partial seizures in five women patients following the 
prescription of Kantelhardt et al. [84].

Let us suppose x(i) for i =1, ............, N, be a non-stationary time 
series of length N. The mean of the above series is given by

( )
1

1 N

ave
i

x x i
N =

= ∑ 	 	 	  	 	                  (1)

Considering  as the increments of a random walk process 
around the average, the trajectory can be obtained by integration 
of the signal.

( ) ( )1
1.......Ni

avek
Y i x k x for i

=
= − =  ∑ 	                                                (2)

The level of measurement noise present in experimental records 
and the finite data are also reduced by the integration thereby 
dividing the integrated time series into Ns non-overlapping bins, 
where Ns = int(N/S) and where s is the length of the bin. As N is 
not a multiple of s, a small portion of the series is left at the end. 
Again, to include that left part, the entire process is repeated 
in a similar way starting from the opposite end, leaving a small 
portion at the beginning. Hence, 2Ns bins are obtained altogether 
and for each bin least-square fit of the series is done followed by 
determination of the variance.
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For each bin ν, ν =1 ........ Ns and
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For ν = Ns + 1........, 2 Ns, where yν (i) is the least square fitted 
value in the bin ν. In our research work we have performed a 
least square linear fit (MFDFA-1). The study can also be extended 
to higher orders by fitting quadratic, cubic, or higher order 
polynomials.

The qth order fluctuation function Fq(s) is obtained after 
averaging over 2 Ns, bins,

( ) ( )
1

2 2 2
1

1/ 2 ,s
qqN

q s v
F s N F s v

=

   =       
∑  	 	                   (5)

where q is an index which can take all possible values except 
zero, as the factor 1/q becomes infinite with zero value. The 
procedure can be repeated by varying the value of s. With the 
increase in the value of s Fq S increases and for the long-range 
power correlated series Fq (s) shows power law behaviour,

					     ( ) ( )h q
qF s s∝

If such a scaling exists, in Fq will depend linearly on s with slope 
h(q). In general, the exponent h(q) depends on q. For a stationary 

normal humans with eyes open and eyes closed. Further in 
another work Ghosh et al. [80] studied the cross-correlation 
of EEG signals during seizure and in seizure free intervals of 
epileptic patients in the investigation of complex signals for 
assessment of cross-correlation among two nonlinear time series 
produced by real biological systems using multifractal detrended 
cross-correlation analysis (MFDXA) methodology which is used 
with high degree of success. The study revealed that, in the 
epileptogenic zone among seizure and seizure free interval, the 
degree of cross-correlation is more.

Since these analyses have provided important and meaningful 
information about the brain dynamics, we have therefore 
been encouraged to use those methods in post-ictal 
electrocardiographic information applying precisely MFDFA the 
results of which are not only new but a step forward towards 
identifying diagnosis, onset and prognosis. In addition, the 
application of MFDFA on pre-ictal and post-ictal ECG signals 
together with larger sample size can yield a better result towards 
identifying diagnosis, onset and prognosis. Again, in the modern 
scientific fields of studying different heart diseases, though 
MFDFA is a widely-used methodology [81-83] but to the best of 
our knowledge no study has been reported about the changes 
in heart rate dynamics after occurrence of seizure using MFDFA. 
The application of MFDFA methodology on ECG patterns can 
help in understanding the changes that occur in heart rate after 
patients have encountered seizure.

Kantelhardt et al. [84] conceived MFDFA for the first time as a 
generalization of the standard detrended fluctuation analysis 
(DFA), and have applied it successfully to study multifractal 
scaling behaviour of various non-stationary time series [84-90]. 
The application of MFDFA provides a method of determining the 
self-similarity or persistence in the series.

Data
This preliminary report is based upon analysis of 7-time series 
obtained from “PhysioNet” (https://www.physionet.org/
physiobank/database/szdb/) [9]. The data contains 11 partial 
seizures recorded in five women patients, aged between 31 and 
48 years, lasting from 15-110 seconds during continuous EEG, 
ECG and video monitoring [91]. Multiple seizures were recorded 
for 2 subjects. The patients were without clinical evidence 
of cardiac disease and had partial seizures with or without 
secondary generalization from frontal or temporal foci. The 
recordings were made under a protocol which was approved by 
Beth Israel Deaconess Medical Center's (BIDMC) Committee on 
Clinical Investigations.

“Data were analyzed off-line using customized software. Onset 
and offset of seizures were visually identified to the nearest 
0.1 second by an experienced electroencephalographer (DLS) 
blinded with respect to the HRV analysis. Continuous single-lead 
ECG signals were sampled at 200 Hz. From the digitized ECG 
recording, a heartbeat annotation file (a list of the type and time 
of occurrence of each heartbeat) was obtained using a version of 
commercially available arrhythmia analysis software” developed 
by Ho et al. [43].
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time series, h(2) is identical with the Hurst exponent H. h(q) is 
said to be the generalised exponent. The value of h(0) cannot 
be obtained directly, because Fq blows up at q = 0. Fq cannot be 
obtained by normal averaging procedure; instead a logarithmic 
averaging procedure is applied.

( ) ( ){ } ( )2 02
0 1

exp 1/ 4 ,sN h
s v

F s N In F s v s
=

 =  ∑ �  	                           (6)

A monofractal time series is characterized by unique h(q) for 
all values of q. If small and large fluctuations scale differently, 
then h(q) will depend on q, or in other words the time series 
is multifractal. Kantelhardt et al. [92] have explained that the 
values of h(q) for q<0 will be larger than that for q>0.

The generalized Hurst exponent h(q) of MFDFA is related to the 
classical scaling exponent ( )  by the relation,

( ) ( ) 1q qh qτ = − 	 	 	 	  	                             (7)

a monofractal series with long range correlation is characterized 
by linearly dependent q- order exponent τ(q) with a single Hurst 
exponent H. Multifractal signals have multiple Hursts exponent 
and ( )qτ  depends nonlinearly on q [93]. The singularity spectrum 
f(α) is related to τ(q) by Legendre transform [94].

( ) ( )'h q qh qα = +  	 	 	 	                            (8) 

 
( ) ( ) 1f q h qα α= − +  

 	 	                	                                 (9) 

 
In general, the singularity spectrum quantifies the long-range 
correlations property of the time series [95]. The multifractal 
spectrum is capable of providing information about the relative 
importance of various fractal exponents in the time series, 
e.g. the width of the spectrum denotes range of exponents. A 
quantitative characterization of the spectra can be done by least-
squares fitting it to quadratic function [96] around the position of 
maximum 0α , 

( ) ( ) ( )2
0 0f A B Cα α α α α= − + − + 		 	                        (10)

where C is a additive constant, ( )0 1C f α= = ; B indicates the 
asymmetry of the spectrum, and zero for a symmetric spectrum. 
The width of the spectrum can be obtained by extrapolating 
the fitted curve to zero. Width W is defined as 1 2W α α= − with 
( ) ( )1 2 0f fα α= = . It has been proposed by some workers [97] 

that the width of the multifractal spectrum is a measure of the 
degree of multifractality. Singularity strength or Holder exponent 
α and the dimension of subset series ( )f α can be obtained from 
reln 9 and 10. For a monofractal series, h(q) is independent of 
q. Hence from relation 9 and 10 it is evident that there will be a 
unique value of α and ( )f α , the value of α being the generalized 
Hurst exponent H and the value of ( )f α  being 1. Hence the 
width of the spectrum will be zero for a monofractal series. The 
more the width, the more multifractal is the spectrum.

The autocorrelation exponent γ can be estimated from the 

relation given below [98,99]

( )( )2 2 2h qγ = − = 		 	 	                                            (11)

For uncorrelated or short-range correlated data, h(2) is expected 
to have a value 0.5 while a value greater than 0.5 is expected for 
long-range correlations. Therefore, for uncorrelated data, γ has a 
value 1 and the lower the value the more correlated is the data.

Multifractality may be of two types: (i) “due to broad probability 
density function for the values of time series and (ii) due to 
different long range correlation for small and large fluctuation”. 
To ascertain the origin of multifractality the time series is 
randomly shuffled and then analyzed. While shuffling the values 
are arranged randomly so that all correlations are destroyed. 
The shuffled series will exhibit non-multifractal scaling if 
multifractality is due to long range correlation and if it is due to 
broad probability density, then, the original h(q) dependence is 
not changed, h(q) = hshuf(q). “But if both kinds of multifractality 
are present in a given series, then the shuffled series will show 
weaker multifractality than the original one” [84].

Superiority of MFDFA Over Other 
Conventional Methods
MFDFA has achieved highest precision in the scaling analysis. The 
results obtained by this method are more reliable compared to 
other conventional methods like Wavelet Analysis, detrended 
moving average (DMA), backward moving average (BMA), 
modified detrended fluctuation analysis (MDFA), continuous 
DFA (CDFA), Fourier DFA etc. Thus, for assessing correlation in 
nonlinear time series, it is considered as a very rigorous and 
robust tool. Again, MFDFA requires less effort in programming 
as compared to conventional DFA, since it does not require the 
modulus maxima procedure. According to some authors, the 
performance of MFDFA is better than other multifractal analyses 
methods [84,100,101]. Furthermore, MFDFA allows detection of 
multifractality in both stationary as well as non-stationary time 
series. Oswiecimka et al. [102] have shown that the application 
of MFDFA is the most reliable one; it is even more reliable 
compared to the most popular methodology wavelet transform 
modulus maxima (WTMM).

However, there are certain drawbacks in the MFDFA method. The 
problem may arise in the identification of correlation properties 
of real data where a large amount of data is missing or removed 
due to artifacts. Although it has been mentioned in the work of 
Ma et al. [103] major findings is not disturbed even with loss of 
data.

Results
The non-stationary times series of ECG data of partial seizures 
recorded in five women patients are analyzed following the 
method described above. 

Multifractal analysis was employed for each set. The data was 
transformed to obtain the integrated signal. This process is 
effective in reducing noise in the data. The integrated time series 
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was divided to Ns bins, where Ns = int(N/s), N is the length of the 
series. The qth order fluctuation function Fq(s) for q = -10 to +10 in 
steps of 1 was determined. Figure 1 depicts the linear dependence 
of ln Fq on ln s suggesting scaling behaviour. The slope of linear 
fit to ln Fq(s) versus ln s plots gives the values of h(q). The values 
of ( )qτ  were also determined. As we have mentioned earlier, 
nonlinear dependence of on ( )qτ  on q suggests multifractality, 
whereas for a monofractal series ( )qτ  depends linearly on q. 
The values of h(q) and ( )qτ  of all the post-ictal ECG signals are 
depicted in Figures 2 and 3 respectively.

The nonlinear dependence of τ(q) on q and the dependence of 
h(q) on q gives evidence for the multifractality of the post-ictal 
heart-rate oscillations. Figure 2 also depicts that the degree 
of dependence of h(q) on q, or in other words, the degree of 
multifractality is different in different cases. From the Figure 2 
we can also see that for q=2 the generalized Hurst exponent h(q) 
of all the ECG signals is greater than 0.5 which means that long 
range correlation and persistent properties exist in all the sets.

We can also make a quantitative determination of the degree 
of multifractality from the multifractal spectrum. Ashkenazy et 
al. [97] have associated the width of the multifractal spectrum 
( ( )f α  versus α ) with the degree of multifractality. Figure 4 
shows the multifractal spectrum of seven post-ictal ECG signals.

The values of multifractal width w obtained by fitting the 
multifractal spectrums to Eq. (8) are listed in Table 1, from which 
we can observe that the multifractal widths of all the seven post-
ictal ECG signals are different ranging from as low as 1.17 to as 
high as 3.95 We also included another Table 2, the main findings 
of which are published in our earlier communication [104]. 

Table 2 shows on the basis of analysis of data obtained from 
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Plot of log of fluctuation function (lnFq) vs. log of time 
scale (lns) of a particular ECG signal. From the slope of 
linear fit of the curves h(q) is obtained defining scaling 
behaviour of the series.

Figure 1

BIDMC congestive heart failure database of five subjects that 
for normal heart, value of multifractal width ranges from 1.073 
to 1.179, whereas for patients suffering from congestive heart 
failure (CHF), the corresponding values are from 1.146 to 2.314. A 
comparison of Tables 1 and 2 clearly reveals that the multifractal 
width of ECG recordings of seizure patients is greater than that 
observed for healthy subjects. Further in some cases the width 
of ECG of the seizure patients is found to be more than that of 
CHF also. Table 1 further reports the variation of auto-correlation 
exponent γ of the ECG signals. 
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Plot of generalized Hurst exponent h(q) vs. order 
of statistical moments q of seven post-ictal ECG 
signals. Dependence of h(q) on q gives evidence of 
multifractality of the ECG signals. For q=2, h(q) >0.5 for 
all signals implying existence of long range correlation 
and persistent properties.

Figure 2
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Plot of classical scaling exponent ( )qτ  vs. order of 
statistical moments q of seven post-ictal ECG signals. 
The non-linear dependence of ( )qτ on q suggests 
multifractality.

Figure 3
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Further from Table 1 we can see that the value of multifractal 
width for sz06 is the least and the auto-correlation exponent 
γ is 0.48 which indicates a high degree of correlation as we 
know lower the value of γ higher is the degree of correlation. 
Thus, from these two values we can say that for sz06 the effect 
of seizure on heart oscillations is the least. Further the same 
Table also reveals the fact that for sz02 the effect of seizure 
on ECG is the maximum as value of multifractal width w is 
twice than that of rest and γ also approaches uncorrelated 
behaviour.

In order to ascertain the origin of multifractality, the ECG 
signals were randomly shuffled and then analyzed. Table 1 
clearly depicts the difference in values of the multifractal 
width and auto-correlation exponent for the original and 
shuffled series. We observe weaker multifractality for the 
shuffled series which implies that origin of multifractality is 
due to both long range correlations and broad probability 
distribution function. Since the sample size is relatively short 
we have not excluded the origin of multifractality due to 
broad probability distribution function. We further observe 
all the values of auto-correlation exponent for the shuffled 
series is close to 1, indicating all correlations are destroyed 
in the shuffling procedure. Figures 5-7 respectively depicts 
plots of h(q) vs. q, ( )qτ  vs. q, and ( )f α vs. α  for the original 
series and randomly shuffled series for a particular set.

This analysis clearly indicates that except sz02 the multifractal 
width of epileptic patients indicates loss of multifractality 
which is outcome of abnormality in the functioning of the 
heart. This point has already been reported and discussed in 
the works of Ivanov et al. [71] and Peng et al. [48]. The case 
of the patient (sz02) is an uneven one since contrary to loss 
of multifractality in other subjects the present analysis shows 
an unusual higher degree of multifractality. This observation 
deserves special attention so far as understanding of dynamics 

of electrocardiography is concerned.

Nevertheless, it can safely be inferred that this anomalous fluctuation 
has genesis in the epileptic seizure of the patient.
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Plot of singularity spectrum ( )f α  vs. Singularity 
strength (Holder exponent) α  of seven post-ictal 
ECG signals. Different widths of all the spectrums 
indicate different degree multifractality.

Figure 4

ECG 
signals

Multifractal Width w                  Auto-correlation Exponent         
Original Shuffled Original Shuffled

sz01 1.815 ± 0.177 0.894 ± 0.044 0.998 ± 0.012 0.995 ± 0.005
sz02 3.950 ± 0.184 0.498 ± 0.009 0.709 ± 0.012 0.856 ± 0.006
sz03 1.661 ± 0.134 0.781 ± 0.029 0.804 ± 0.014 0.962 ± 0.005
sz04 1.527 ± 0.135 0.654 ± 0.020 0.733 ± 0.012 0.993 ± 0.006
sz05 1.269 ± 0.119 0.761 ± 0.025 0.643 ± 0.007 1.085 ± 0.006
sz06 1.165 ± 0.060 0.403 ± 0.006 0.475 ± 0.007 0.942 ± 0.005
sz07 1.604 ± 0.085 0.742 ± 0.031 0.801 ± 0.006 0.908 ± 0.005

γ

Table 1 Values of Multifractal Width (w) and Auto-correlation Exponent (γ ) 
of seven post-ictal ECG signals for original and shuffled series.
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Values of multifractal width (w) of ECG signals of normal 
healthy people and CHF patients (Channel I).

Figure 5
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Plot of generalized Hurst exponent h(q) vs. order of 
statistical moments q of original and shuffled data of a 
particular signal. The shuffled time series shows lesser 
fluctuation as compared to the original one.

Figure 6



7

ARCHIVOS DE MEDICINA
ISSN 1698-9465

2017
Vol. 8 No. 1: 106

Translational Biomedicine
ISSN 2172-0479

© Under License of Creative Commons Attribution 3.0 License

We have reasons to comment that the present analysis of ECG 
data for post-ictal patient with a very sensitive and rigorous non-
linear technique provides information irrespective of cardiac 
status of post-ictal patient quantitatively which is not at all 
possible with the help of all other existing techniques. Needless 
to say, that Table 1 further shows that in case of sz06 the 
multifractal width w is close to width of Sample III of Table 2, i.e. 
ECG data of the patient suffering from CHF.

The present investigation clearly indicates that the analysis of 
ECG data of post-ictal patients with the help of MFDFA technique 
is the proper tool for further exhaustive investigation taking 
large set of data which might be able eventually for supplying 
quantitative information about the cardiac status of the patients. 
The importance of this work can be expressed in one line that 
this quantitative approach is a step forward towards assessment 
and monitoring of epileptic patients with the help of quantitative 
information about the cardiac status.

Discussion
The application of rigorous nonlinear technique in analyzing ECG 
data of patients clearly supports the fact that the epileptic seizure 
is associated with the autonomic deregulation. The analysis 
further shows the degree of autonomic deregulation can be 
quantified with the help of two parameters i.e. the multifractal 
width and auto-correlation exponent.

However, along with post-ictal data, pre-ictal data for different 
epileptic patients can be analyzed following this technique which 
possess a far fetching importance for development of software 
where the findings can be used to develop automatic alarm 
before seizure as well as even a precursor of cardiac arrest. 
Since no attempt is reported so far, in this direction the present 
analysis provides new data using chaos-based latest state of 
the art methodology which can capture a small change of signal 
giving rise to a large consequence. It deserves emphasizing that 
the patients suffering from epilepsy experience some significant 
cardiac changes during seizure, causing some serious cardiac 
malfunctions which may lead to SUDEP. Attempts can be made 
through continuous monitoring of the multifractal parameters 
to provide the information about the degree of serious cardiac 
malfunction for which proper medication can be administered to 
avoid SUDEP.

Conclusion
The study reveals that the degree of autonomic deregulation can 
be quantified with the help of two parameters, the multifractal 
width and the autocorrelation exponent.
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Figure 7

ECG signals of
healthy people

Multifractal 
Width (w)

ECG signals of
CHF patients

Multifractal  
Width (w)

Sample I 1.107 ± 0.152 Sample I 1.735 ± 0.069
Sample II 1.179 ± 0.139 Sample II 2.314 ± 0.087
Sample III 1.090 ± 0.082 Sample III 1.146 ± 0.239
Sample IV 1.073 ± 0.045 Sample IV 2.313 ± 0.039
Sample V 1.110 ± 0.151 Sample V 1.240 ± 0.132

Table 2 Values of multifractal width (w) of ECG signals of normal healthy 
people and CHF patients (Channel I).
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