16 (3) 2025 : 001-002 • Commentary

Functional and rehabilitative outcomes of patients affected by bone cancer

Tosimo Homera^{*}

Department of Speech Language Pathology, Institute of Speech and Hearing, Japan

Bone cancer poses significant challenges to patients, impacting their functional abilities and requiring extensive rehabilitative efforts. This article aims to explore the functional and rehabilitative outcomes of patients affected by bone cancer, discussing the complexities of treatment, rehabilitation strategies, and the importance of multidisciplinary care.

INTRODUCTION

Understanding bone cancer

Bone cancer, though relatively rare compared to other cancers, can severely impair musculoskeletal function and overall quality of life. Primary bone cancers originate in the bone tissue, while secondary bone cancers metastasize from other primary cancer sites. Common types include osteosarcoma, chondrosarcoma, and Ewing's sarcoma, each with unique characteristics and treatment approaches.

Treatment modalities and functional implications

The treatment of bone cancer typically involves a combination of surgery, chemotherapy, radiation therapy, and targeted therapy. While these treatments are essential for disease management, they can lead to functional impairments such as pain, weakness, restricted mobility, and limb loss. Surgical resection, although necessary for tumor removal, often results in anatomical deficits and altered biomechanics, requiring tailored rehabilitation interventions.

Rehabilitative strategies

Rehabilitation plays a crucial role in optimizing functional outcomes and enhancing the quality of life for bone cancer patients. Multidisciplinary rehabilitation teams comprising physiotherapists, occupational therapists, oncologists, psychologists, and prosthetists work collaboratively to address the diverse needs of patients. Rehabilitation strategies encompass a spectrum of interventions aimed at improving strength, mobility, pain management, psychosocial well-being, and functional independence [1-5].

Physical therapy

Physical therapy focuses on restoring musculoskeletal function, enhancing mobility, and managing treatment-related complications such as lymphedema and neuropathy. Therapeutic exercises, manual techniques, and assistive devices are employed to improve range of motion, strength, and proprioception. Additionally, pre-operative and post-operative conditioning programs help optimize surgical outcomes and facilitate recovery.

Occupational therapy

Occupational therapists assess patients' abilities to perform Activities of Daily Living (ADLs) and provide interventions to enhance independence and productivity. Adaptive equipment, environmental modifications, and energy conservation techniques are prescribed to mitigate functional limitations and promote

Address for correspondence:

Tosimo Homera.

Department of Speech Language Pathology, Princeton University Princeton, Japan;

E-mail: htosimo@gmail.com

Word count: 741 Tables: 00 Figures: 00 References: 10

Received: 22.07.2024, Manuscript No. IPJNN-24-15065; Editor assigned: 24.07.2024, PreQC No. IPJNN-24-15065 (PQ); Reviewed: 07.08.2024, QC No. IPJNN-24-15065; Revised: 13.06.2025, Manuscript No. IPJNN-24-15065 (R); Published: 20.06.2025

autonomy. Vocational rehabilitation programs assist patients in returning to work or pursuing alternative career options post-treatment [6-8].

Pain management

Pain is a prevalent symptom in bone cancer patients, stemming from the disease itself, treatment modalities, and associated musculoskeletal complications. Pharmacological interventions, including analgesics, adjuvant medications, and nerve blocks, are tailored to individual needs to alleviate pain and improve overall comfort. Non-pharmacological approaches such as acupuncture, mindfulness-based techniques, and physical modalities offer complementary pain relief strategies.

Psychosocial support

Psychosocial support is integral to addressing the emotional and cognitive challenges faced by bone cancer patients and their families. Psychologists provide counseling, coping strategies, and psychoeducation to help patients navigate the psychological impact of diagnosis, treatment, and survivorship. Peer support groups and survivorship programs foster a sense of community and resilience, empowering patients to cope effectively with adversity [9,10].

Prosthetic and orthotic services

For patients undergoing limb-salvage procedures or amputation, prosthetic and orthotic services play a pivotal role in restoring function and facilitating reintegration into daily life. Customized

prostheses, orthoses, and adaptive devices are tailored to individual needs, promoting mobility, balance, and prosthetic acceptance. Comprehensive prosthetic rehabilitation programs encompass gait training, prosthetic fitting, and psychosocial support to optimize outcomes and promote long-term adherence.

Challenges and future directions

Despite advancements in treatment and rehabilitation, bone cancer patients continue to face significant challenges in achieving optimal functional outcomes. Access to comprehensive rehabilitation services, financial constraints, and psychosocial barriers present formidable obstacles to care delivery. Future research endeavors should focus on innovative rehabilitation technologies, personalized interventions, and patient-centered outcomes to address the evolving needs of this patient population.

CONCLUSION

The functional and rehabilitative outcomes of bone cancer patients are influenced by a myriad of factors, including disease characteristics, treatment modalities, and rehabilitation interventions. Multidisciplinary rehabilitation approaches encompassing physical, occupational, psychosocial, and prosthetic services are essential for optimizing functional independence, enhancing quality of life, and promoting holistic well-being. Through collaborative efforts and innovative strategies, healthcare professionals can empower bone cancer patients to navigate their journey with resilience, dignity, and hope.

- Stomeo D, Tulli A, Ziranu A, et al. Acrometastasis: a literature review. Eur Rev Med Pharmacol Sci. 2015; 19:2906-2915.
- Atesok K, Liebergall M, Sucher E, et al. Treatment of pathological humeral shaft fractures with unreamed humeral nail. Ann Surg Oncol. 2007; 14:1493–1498.
- Bashore CJ, Temple HT. Management of metastatic lesions of the humerus. Orthop Clin N Am. 2000; 31:597-609.
- Bickels J, Dadia S, Lidar Z. Surgical management of metastatic bone disease. J Bone Joint Surg Am. 2009; 91:1503-1516.
- Spiteri V, Bibra A, Ashwood N, et al. Managing acrometastases treatment strategy with a case illustration. Ann R Coll Surg Engl. 2008; 90:8.
- D'Arienzo A, Ipponi E, Ruinato AD, et al. Proximal humerus reconstruction after tumor resection: an overview of surgical management. Adv Orthop.

2021; 5559377.

- Athwal GS, Chin PY, Adams RA, et al. Coonrad-Morrey total elbow arthroplasty for tumours of the distal humerus and elbow. J Bone Joint Surg Br. 2005; 87:1369-1374.
- D'ADAMIO S, Ziranu A, Cazzato G, et al. Antifungal properties of silver coating on tumour endoprostheses: an in vitro study. Eur Rev Med Pharmacol Sci. 2019; 23.
- El Motassime A, Meschini C, di Costa D, et al. Functional outcomes and shoulder instability in reconstruction of proximal humerus metastases. Curr Oncol. 2023; 30:3571-3579.
- Berger C, Larsson S, Bergh P, et al. The risk for complications and reoperations with the use of mega prostheses in bone reconstructions. J Orthop Surg Res. 2021; 16:1-10.