

HLA-B27: Genetics, Role in Disease, and Clinical Relevance

Celia Michels*

Department of Rheumatology, Sint Maartenskliniek, Ubbergen, Netherlands

Received: 01-April-2025, Manuscript No: ipar-25-15738; **Editor assigned:** 04-April-2025, PreQC No: ipar-25-15738 (PQ); **Reviewed:** 18-April-2025, QC No: ipar-25-15738; **Revised:** 25-April-2025, Manuscript No: ipar-25-15738 (R); **Published:** 30-April-2025

Corresponding author:
Celia Michels

 michels_celia@gmail.com

Department of Rheumatology, Sint Maartenskliniek, Ubbergen, Netherlands

Citation: Michels C (2025) HLA-B27: Genetics, Role in Disease, and Clinical Relevance. *Acta Rheuma*, Vol. 12 No. 2: 77.

Introduction

Human Leukocyte Antigen B27 (HLA-B27) is a genetic marker that has attracted significant medical and scientific interest due to its strong association with certain autoimmune and autoinflammatory diseases. Found on the surface of white blood cells, HLA-B27 is part of the major histocompatibility complex (MHC) class I molecules, which play an essential role in the immune system by presenting protein fragments to T-cells. While the presence of HLA-B27 alone does not cause disease, it markedly increases the risk of developing conditions such as ankylosing spondylitis and other forms of spondyloarthritis.

What is HLA-B27?

HLA-B27 is one of many variations of the HLA-B gene, located on chromosome 6. These genes help regulate immune function by distinguishing the body's own proteins from those of pathogens. The B27 subtype is relatively uncommon in the general population but has a strong correlation with specific rheumatologic and inflammatory disorders. Interestingly, not all individuals who carry HLA-B27 develop disease, indicating that environmental triggers and other genetic factors play important roles in disease onset.

Prevalence

The frequency of HLA-B27 varies across populations. In northern European populations, around 8–14% of people carry the gene, while in some Asian groups the prevalence is significantly lower. In contrast, certain Indigenous populations, such as those in Alaska and northern Canada, may have carrier rates as high as 25–50%. Despite its prevalence in these groups, not all carriers exhibit symptoms, suggesting that gene expression interacts with other risk factors.

HLA-B27 and Disease Association

The strongest association of HLA-B27 is with ankylosing spondylitis (AS), where up to 90–95% of patients test positive for the gene. Other spondyloarthropathies are also linked, though to a lesser degree:

Reactive arthritis – often following gastrointestinal or genitourinary infections.

Psoriatic arthritis – particularly with axial involvement.

Inflammatory bowel disease-associated arthritis.

Acute anterior uveitis – recurrent eye inflammation strongly tied to HLA-B27.

These associations highlight the gene's importance in immune system regulation and dysfunction.

Mechanisms of Disease Development

The exact mechanisms by which HLA-B27 contributes to disease remain a subject of ongoing research. Several hypotheses exist:

Arthritogenic peptide hypothesis: HLA-B27 may present self-peptides that mimic microbial proteins, leading to autoimmunity.

Misfolding hypothesis: Misfolded HLA-B27 proteins within cells may trigger stress responses, promoting inflammation.

Abnormal immune interactions: HLA-B27 may influence interactions between T-cells and other immune pathways, leading to uncontrolled inflammation.

It is likely that multiple mechanisms act together, with both genetic susceptibility and environmental exposures contributing to disease development.

Diagnosis and Testing

Testing for HLA-B27 is typically done through **blood tests**. A

positive result does not confirm disease but can support a diagnosis when combined with clinical symptoms and imaging findings. For example, in a patient with chronic inflammatory back pain, a positive HLA-B27 test increases the likelihood of ankylosing spondylitis. However, many people with HLA-B27 never develop disease, so testing must always be interpreted in context.

Clinical Implications

The presence of HLA-B27 has several important clinical implications:

Early recognition of disease: Helps clinicians suspect spondyloarthritis or uveitis in patients with characteristic symptoms.

Prognostic value: In some cases, HLA-B27 positivity is linked with earlier disease onset or more severe disease course.

Family history considerations: Relatives of HLA-B27 positive individuals may have increased risk, especially if combined with symptoms.

Treatment and Management

While HLA-B27 status influences risk, it does not directly alter treatment choices. Management of associated diseases focuses

on controlling inflammation and preventing progression.

Non-steroidal anti-inflammatory drugs (NSAIDs): First-line treatment for ankylosing spondylitis.

Biologic therapies: TNF inhibitors and IL-17 inhibitors have transformed outcomes in HLA-B27-associated diseases.

Multidisciplinary care: Ophthalmologists, gastroenterologists, and rheumatologists may collaborate when systemic manifestations are present.

Conclusion

HLA-B27 is a powerful genetic marker that has reshaped our understanding of immune-mediated diseases, particularly spondyloarthritis. While it is not a direct cause of illness, its strong association with conditions like ankylosing spondylitis highlights the complex interplay between genetics, the immune system, and environmental triggers. Testing for HLA-B27 can provide valuable diagnostic support, but results must be interpreted carefully within a broader clinical context. With ongoing research into immune mechanisms and new biologic treatments, individuals with HLA-B27-associated diseases now have greater opportunities for early diagnosis, effective therapy, and improved quality of life.