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Abstract
Correlation and linear regression are frequently used to evaluate the degree of 
linear association between two variables and also to find the empirical relationship. 
However, violations of assumptions often give results which are not valid.  High value 
of correlation coefficient is taken as degree of linearity between two variables and 
attempt is made to fit linear regression equation. However, linearity implies high 
correlation but the converse is not true.  The paper describes with examples that 
concept of linearity is different from correlations, effect of violation of assumptions 
of correlations and linear regressions and suggests procedures to improve correlation 
between two variables which can be extended to multi variables. 
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Introduction
Correlations are often used in various fields of research. There are 
different kinds of correlations depending on nature of variables. 
Cause and effect relationship along with direction of the linear 
relationship between two variables, is reflected by Pearsonoian 
correlation, assumptions of which include: measurement on 
each variable is at least interval level, data on each variable 
follows normal distribution and has no outliers, etc. However, 
correlation does not always imply causation [1]. Correlation 
between two variables could be due to a third variable affecting 
both the variables under study viz. Item reliability in terms of 
item-total correlation. Variables may be correlated over time 
where data is longitudinal. For example, earth’s temperature and 
levels of greenhouse gases are positively correlated. Estimating 
correlation between two such trending variables after removing 
the trend is desirable [2]. 

By definition, correlation between X and Y is the ratio of Cov(X,Y) 
and product of SD(X)and SD(Y). Thus, average of k-number of 
correlations r ̅=(∑_(j=1)^k raja )/k  is meaningless for correlations 
with mixed signs and of same sample size (Field, 2003). However, 
computation of average inter-item correlations is used in 
psychological literature to reflect level of consistency of a test and 
is regarded as a quality of test as a whole. Correlation between 
two variables (r_XY) is high if the ratio of change in one variable 
(Y) due to unit change in the second variable(X) is constant for all 
values of X [3].

Interpretation and use of correlation is important for 
measurement by practitioners and researchers since simple 

correlations are used in various studies, including multivariate 
statistical procedures such as multiple regressions, ANOVA, 
principal component analysis (PCA), factor analysis (FA), path 
analysis, structural equation modeling, etc., each of which uses 
simple correlations and/or their extensions. Interpretation of 
correlation as proportion of pairs with identical values of the two 
variables or as the probability of correct prediction of one of the 
variable with knowledge of the other is wrong [4, 5]. A popular 
way of interpretation of correlation is to indicate the extent by 
which variance in one variable is explained by the second variable 
by computing 〖r_XY〗^2 known as coefficient of determination. 
For example, 〖r_XY〗^2=0.64 suggests that X accounts for 64% 
of the variance of Y. The shared variance between X and Y is 
a key concept for statistics with multiple predictor variables 
(e.g., factorial ANOVA, multiple regression) and is a common 
measure of effect size (R^2 and η^2). Rodgers and Nice wander 
(1988) described 13 ways of interpreting a correlation. Another 
interpretation of correlation as the proportion of matches was 
suggested [4].

Correlation coefficient r_XY∈[-1,1] is taken as degree of linearity 
between two variables. If correlation between X and Y (r_XY) 
is high i.e.|r_XY |≈1, the variables are usually taken as linearly 
related and attempt is made to establish linear regression of the 
form Y=α_1+β_1 X+ ϵ_YX or X=α_2+β_2 Y+ϵ_XY. The assumption 
of normal distribution is not needed to estimate the regression 
coefficients (β's) but ϵ_YX and ϵ_XY must be normally distributed 
with mean = 0 and constant variance (homoscedasticity). 
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However, Loco, et al. (2002) found that the investigated curves 
were characterized by a high correlation coefficient (r > 0.997) 
but the straight-line model was rejected at the 95% confidence 
level on the basis of the Lack-of-fit and Mandel’s fitting test.

The paper describes with examples that concept of linearity is 
different from correlations, effect of violation of assumptions of 
correlations and linear regressions and suggests procedures to 
improve linearity between two variables which can be extended 
to multi variables (Table 1).

Correlation and Linearity
Observations:
If X is increasing and Y is decreasing, r_XY is negative viz.  r_(X,1/X) 
, r_(X,CosX), etc.

r_(X,f(X)) |≥0.92 for non-linear f(X) = X^2,X^3,  〖log〗_10^X, Cos 
X and Sin X despite non-linear relationship between X and f(X)

Maximum improvement in correlation was observed for X and 
f(X) = Sin X where r_(X,SinX)=0.99982 followed by r_(X,CosX)=(-) 
0.97156.  Thus, trigonometric transformations like f(X) = Sin X or 
f(X) = Cos X tend to improve absolute magnitude of correlation 
coefficient.

Correlation may not always imply linearity. Scatter plot may 
throw more light on linearity and validity of linear regression line. 

The above can be summarized as “Linearity implies high 
correlation but the converse is not true”.  

Question therefore arises on how to know linearity between 
two variables. A simple way to check linearity between Y and 
X is to see whether (Resulting change in Y )/(Unit change in X) 
is constant for all values of X. In other words, one may check 
for constant slope of the straight line connecting X and Y by 
considering (Y_i-Y_(i+1))/(X_i-X_(i+1) ) and checking whether the 
ratio is constant for all values of i. If yes, (Y_i-Y_(i+1))/(X_i-X_(i+1) 
)   can be taken as slope of the straight line (β). Checking of (Y_i-Y_
(i+1))/(X_i-X_(i+1) ) for few illustrative non-linear functions of X 
are shown in Table 2.

In fact, absolute value of r_XY  could be high i.e. |r_XY |≈1 even 
if X and Y are related by a non-linear fashion. For example, if X 
takes integer values from 1, 2, 3… 30, correlation between X and 
several non-linear function of X are high as shown below (Table 
2).

Visual approaches to check normality include among others the 
output of a quantile–quantile or Q–Q plot which is a scatter-
plot of the quantiles of a theoretical normal data set (on X-axis) 
and the quantile of the actual sample data set (on Y-axis). If the 
data are normally distributed, the data points on the Q–Q plot 
will be closely aligned with the straight line with slope 1.  If the 
individual data points are away from the diagonal line, data are 
not normally distributed.  Alternatively, linearity can be tested 
by first fitting a linear regression line of the form (say) Y= α+βX+ϵ  
followed by finding predicted values of Y as Y ̂ and then testing 
significance of variance of error scores  S_E^2  or standard  error 
S_E=√(1/n ∑〖(Y_i-Y ̂_i)〗^2 ) = S_Y √(1-r^2 )  where n denotes 
number of observations and E=(Y-Y ̂). Note that higher absolute 
value of correlation will result in lower value of S_E  and may 
lead to acceptance of H_0: S_E^2=0.  Normal probability plot of 
error score for X and illustrative non-liner function of X are shown 
below:

Normal probability of error score for predicting X^2 on X is given 
in (Figure 1).   

Error score for predicting X^2 on X did not pass the normality 
test. AD statistic was 1.048 and p-value 0.007955658 (Figures 2 
& 3)

For better visualization of linearity one can draw a scatter plot 

X X2 X3 Cos X Sin X

X 1 0.97029 -0.64789 0.92011 0.92064 -0.97156 0.99982
X2 1 -0.50445 0.98629 0.81179 -0.99998 0.96559

1 -0.42219 - 0.87699 0.50689 -0.65623

X3 1 0.72716 -0.98529 0.91251
1 -0.81425 0.92630

Cos X 1 -0.96696
Sin X 1

Table 1. Correlation between X and Non-Linear function of X.

Figure 1 Normal probability plot of error score for X^2= α+βX.
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of residuals and Y values. Y values are taken on the vertical 
Y-axis, and standardized residuals are plotted on the horizontal 
X- axis. A linear pattern of the scatter plot indicates that linearity 
assumption is met. There are other tests of normality like 
Shapiro-Wilk test, Kolmogorov-Smirnov test, etc. The Shapiro-

Wilk test with greater power than the Kolmogorov-Smirnov test 
is preferred as a numerical means for assessing data normality 
[6]. Best is to undertake the Anderson – Darling test (AD-test) 
of normality which is an alternative to the chi-square and 
Kolmogorov-Smirnov (KS) goodness-of-fit tests. Power of AD-test 

 
(X Is +Ve Integer)

Observation

1 2 1 4 3  Is Not Linear Despite 
10 11 100 121 21

    Y= 
1 2 1 0.5 0.5  Is Not Linear Despite 
10 11 0.1 0.090909 0.01389

Y = Y =  Is Not Linear Despite
 1 2 0 0.30103 0.30103

10 11 1.0 1.04139 0.04139

1 2 0.017452 0.034899 0.01744709  Is Almost Linear  ( )
10 11 0.1736482 0.190809 0.01716082

1 2 0.99985 0.99939 0.00046  Is Almost Linear ( )
10 11 0.98481 0.98163 0.00318

0.1 0.2 0.397 0.391 -0.06  Is Not Linear For  (
1.1 1.2 0.2179 0.1942 -0.237

-0.1 -0.2 0.397 0.391 0.06  Is Not Linear For
     (1.1 1.2 0.2179 0.1942 -0.237

Table 2. Checking of (Y_I-Y_(I+1))/(X_I-X_(I+1) )=K With different Y=F(X).

Figure 2 Normal probability plot of error score for X^3= α+βX. Figure 3 Normal probability plot of error score for〖log〗_10^X= 
α+βX.
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is more than the same for Lilliefors test and KS test [7]. The AD-
test can best be applied if there are no tied scores to test H_0: 
The univariate data follows normal distribution against H_1:  The 
univariate data follows normal distribution. AD-test rejects the 
hypothesis of normality when the p-value is ≤ 0.05.  Failing the 
normality test means that with 95% confidence the data does not 
fit the normal distribution.  Passing the normality test implies no 
significant departure from normality. S_E and results of AD-test 
for normality of error scores of the chosen non-linear functions 
of X are shown in (Table 3).

Thus, the assumption of normality of error of prediction needs 
to be verified for fitting regression line and not merely the 
magnitude of correlation.

Take another example where X follows N (0, 1) and Y is the 
ordinate of N (0, 1) i.e. 

Y=1/√2π  e^((-1)/2 X^2 ). Clearly, X and Y are not linear. 

Consider Case: 1 where 0≤X≤3.9 then r_XY= - 0.93302 and Case: 
2 where -3.9≤X≤3.9 results in r_XY= 0.00036. 

Interpretation of r_XY from Case: 1 is X and Y are highly correlated 
but correlation is negative i.e. increase of one unit in X will result 
in decrease of Y and vice versa. However, interpretation of  r_XY 
from the Case – 2 will be just reverse. Low value of r_XY= 0.00036 
tends to indicate that X and Y are independent, which is not the 
case in reality. In Case: 1, r_XY increased due to consideration of 
restricted range of values of X. In other words, truncated values 
of one or more variables (or homogeneity of data) may distort 
true relationships between two variables i.e. truncated score can 
underestimate or overestimate the correlation. However, many 
studies in social science involve variable (say X) taking positive 
values only assume the variable follows normal distribution 
and investigate relationship of X with other variables with 
homogenous sample and thus raise question about validity of 
such results [8].  

The problem of truncated values may also occur if we want to 
find correlation between height and weight of students of say 
Class V. Here, r_XY will be poor, primarily due to range restriction 
of both the variables and also due to high homogeneity of 
the sample. Similarly, correlation between SAT scores and 
undergraduate grade point average (GPA) at some selective 
universities could be as low as 0.20 [8]. This is primarily due to 
small range of SAT scores of students admitted to the selective 
colleges and universities. Similarly, validity of selection test as 
a correlation between test scores and job performance is poor 
since range of test score is small for the persons selected through 
the test i. e. a homogeneous group. Other factors being equal, 

a restricted range usually yields a smaller correlation since it 
fails to reflect all the characteristics of the variable(s) being 
analyzed. Heteroscedasticity may be a serious empirical problem 
in truncated-sample models [9-11].

Even if linearity between variables is established, question arises 
regarding choice of independent and dependent variable when 
there is no cause and effect relationship. For example, Export 
Performance (EP) and GDP are having strong correlation. But, 
regression line of EP on GDP is different from regression of GDP 
on EP. Usually, choice of regression line is made depending on 
the purpose. To investigate equivalency between 5-point and 
7-point scales, Colman [12], used linear regression equations, 
X_7= α_1+β_1 X_5 and X_5= α_2+β_2 X_7. But S_E of the two 
regressions are different. Probable solution could be to transform 
the variables so that variances of the transformed variables are 
same. One simple way to achieve this is to transform the original 
variables X and Y to P=X/(SD(X))  and Q=Y/(SD(Y)) . 

This result in Var (P) = Var (Q) =1 i.e. homoscedasticity Regression 
coefficient for P on Q = same for Q on P and is equal to r_PQ=r_
XY. In other words, slope of the two regression lines P on Q and Q 
on P coincide and the two regression lines are parallel [13].

For example, let X and Y are the scores on a 5-point scale and 
7-point scale respectively of 100 individuals who responded 
to both the scales. Let us transform X to P where P=X/(SD(X)).  
Similarly, Q is obtained from Y by Q = Y/(SD(Y)). Details are shown 
in (Table 4).

Clearly, regression equation P=a+bQ is parallel to the regression 
equation Q=c+dP

where b=d, Efficiency or goodness of fit of both the regression 
equations are same since standard error of prediction of P 
from Q is equal to the same for Q from P = 0.988038.  Thus, the 
transformations allow us to consider any of the variables P and Q 
as independent variable [14].

For the purpose of prediction, estimated values of P and Q can be 
transformed back to corresponding values of X and Y.

For multiple linear regression, such transformations to the 
dependent variable(Y) and each independent variable (X_i) will 
result in situation where each β_i = r_(X_i Y)

Other transforms
Equality of mean and variance
Consider a bivariate data on two variables X and Y with sample 
size n 

Predicting f(X)With X As The Independent Variable SD Of Error Score (SE) Anderson – Darling Test
AD-Statistic P-Value Remarks For Error Score

F(X)=X2 68.0392 1.048 0.007956 Normality Was Rejected
F(X)=X3 3205.454 0.916 0.019875 Normality Was Rejected

0.14419 1.336 0.001834 Normality Was Rejected

F(X)=Cos X 0.009938 1.055 0.00904 Normality Was Rejected
F(X)=Sin X 0.002791 0.917 0.01975 Normality Was Rejected

Table 3. Anderson Darling test of Normality of error scores.
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X Y Q= 

Mean 19.16 25.38 7.33533 6.983584
Variance 6.822626 13.20768 1 1
SD 2.612016 3.634237 1 1
Correlation 0.154207 0.154207
Slope (Beta) For Regression 
Lines 

0.214556 (Y On X)
0.110832 (X On Y)

0.154207 (Q On P)
0.154207 (P On Q)

Intercept (Alpha) For 
Regression Lines 

21.2691 (Y On X)
16.34707 (X On Y)

5.852425 (Q On P)
6.258413 (P On Q)

Standard Error Of Prediction 
(SE)

3.590766 (Y On X)
2.580772 (X On Y)

0.988038 (Q On P)
0.988038 (P On Q)

Table 4. Regression with transformed variables.

Description of Variable(S)

X ∼N(0, 1) And 0.000361 1.0 0.001036 0.001037
X ∼N(0, 1) And -0.933018 1.0 -0.96674 -0.96666

X: Integer Values Between 1 
And 30

0.99982 -0.97156 -0.96696

X: Score In 5-Point Scale And
Y: Score In 7-Point Scale

0.154207 0.999951 -0.99649 -0.99562

Table 5. Correlation between X and Trigonometric functions of X.

Define W_i= X_i- X ̅+ S_X   and P_i=  Y_i- Y ̅+ S_Y

So ∑〖W_i 〗= nS_X   ⟹ W ̅= S_X  

Now  W_i- W ̅= X_i- X ̅ ⟹Var(W)= Var(X)

Thus, SD (W)= SD(X)= W ̅ 

Thus, mean (W) = variance (W) and ‖W‖^2= 2nS_X^2  ⟹ ‖W‖ 
=√2n S_X  

Similarly, Mean (P)= SD(P) and ‖P‖ =√2n S_Y  and r_PW=r_XY

β for W on P = r_PW.SD(P)/SD(W)  = rPW.P ̅/(W ̅  ) 

Thus, standard error for W on P is S_W √(1-r^2 ) will be lesser 
than standard error of P on W if W ̅<P ̅

Transformations to increase correlation
If r_XY is poor, it is possible to use transformation f(X) and/or 
g(Y) so that r_(f(X),g(Y)) is improved. Geometrically, it amounts 
to attempt to make the scatter plot of f(X) and g(Y) rather linear 
i.e. to achieve linearity.  f(X) and g(Y)  may be so chosen to ensure 
similarity of form of distribution of f(X) and g(Y). Clearly, f(X) and 
g(Y) will be non-linear [15].

Illustrative examples of transformations on a 
single variable are
1. Logarithmic functions: f(X)=logX where X≥0,  

Logarithms are inverses of exponential functions and can even 
change direction of correlation. It helps to reduce skewness.

2. Square root functions: f(X)= √X where X≥0

It has a moderate effect in change of shape of the distribution. 
It helps reducing right skewness.    3. Reciprocal function:  f(X) = 
1/X where X≠0

It changes shape of distribution and reverses order among values 

with same sign.

4. Trigonometric functions: f(X)=Sin X or g(X)=Cos X

Correlation between X and f(X) and g(X) for in illustrative cases 
are shown in (Table 5)

Almost perfect correlation was observed for f(X)=SinX even 
when r_XY  ≈0  and also when the variable takes negative and 
positive values.|r_(X,CosX) |≈1.  However, such empirical findings 
need to be rooted with theoretical explanations establishing high 
correlation between X and trigonometric function of X.

5. Arcsine Transformation: f(X)= 〖Sin〗^(-1) √X where 0≤X≤1 and 
f(X) is in radians range from -π/2 to π/2. It essentially stretches 
the tails of data. This is commonly used for proportions, like 
proportion of individuals in different genders [16]. 

6. Box-Cox transformation:  f(X)=  (X^λ-1)/λ   if λ≠0

                                            = logX if  λ=0

In the Box-Cox linearity plot, r_(f(X),Y) is taken along the Y-axis 
for a given value of λ  and λ  are represented along the X-axis. 
The optimal value of λ is the one which corresponds to the 
maximum correlation (or minimum for negative correlation) on 
the plot. Wessa, (2012) has given software for Box-Cox plot. The 
transformation is used to reduce extent of non-normality and 
heteroscedasticity. 

Attempts can be made to find class of functions so that r_XY =
〖Cosθ〗_xy=(x^T y)/‖x‖‖y‖ = 1 where x and y are deviation scores 
defined as x_i=X_i-X ̅ and y_i=Y_i-Y ̅. Assume θ_xy≠0 so that r_
XY≠1

The condition requires x^T y= ‖x‖‖y‖

⟹x.[ x^T y]= ‖x‖‖y‖. x ⟹ x.x^T [y]= ‖x‖‖y‖. x ⟹ A.[y]= ‖x‖‖y‖. x  (1)

Where the matrix A=  x.x^T

Note that A is a square matrix of order n×n with rank 1. Thus, 
A^(-1) does not exist. However, one can find generalized inverse 
(G-inverse) of the matrix A. Let it be denoted by G_(n×n )where 
AGA = A

From the above equation, it follows that y=G.‖x‖‖y‖. x              (2)

⟹y/‖y‖ = G.‖x‖. x 

Estimated value of the Y-vector (Y ̂) will be perfectly correlated 
with X. Test of linearity will follow. 

Conclusion
Since G-inverse is not unique, solution of (2) is not unique. Moore-
Penrose method of finding G-inverse is popular. Solution of the 
equation (2) will give a method to introduce linearity between 
two non-linear variables and can help to convert non-linear 
relations to linear relationships. Such solution may be extended 
to ensure linearity between a dependent variable (Y) and a set of 
independent variables (Multiple linear regressions) or between 
set of dependent variables and set of independent variables 
(Cannonical regression). Empirical illustration of G-inverse 
and extensions for multiple linear regressions and Cannonical 
regressions are suggested for future studies.
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