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Modern Dressings

Abstract
Dressings are employed across the world as a ubiquitous form of wound treatment 
in the 21st century. However, the differences between the thousands of wound 
dressing products currently available on the market can be difficult for clinicians 
to understand. Common categories of dressings include bioactive, hydrocolloids, 
hydrogels, alginate-based gels and semi-permeable films among others. However, 
understanding each dressing’s characteristics is crucial for clinicians to providing 
the highest standard of care to their patients. This review will highlight the 
important compositional differences among the most common variants of modern 
wound dressings and discuss the implications on their clinical applications and 
antimicrobial properties. As new material is introduced and novel concepts in 
microbiology are illuminated, more researchers will seek to apply their knowledge 
to the research and development of modern wound dressings. This review hopes 
to inspire and guide future studies of wound dressings in an interesting and 
meaningful direction.
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Introduction 
Wound dressing is certainly no new topic in the world of medicine. 
Evidence suggests that over two thousand years ago, Egyptians 
were already using bandages soaked with grease to manage flesh 
wounds [1,2]. In the two millennia that followed, newer and 
more effective tactics have evolved, all the while keeping two 
central goals in mind [3]. First, dressings should aid, or at least 
not interfere with the body’s intrinsic healing process. Second, 
dressings should protect the wound from further external 
damage. The most common cause of such external damage, 
as clinicians learned through the microscope, turns out to be 
infection. 

These two central concepts remain the basis of moist-wound 
healing in the 21st century. A dressing that keeps the wound moist 
can contribute to more rapid healing, less agony for the patient, 
and better tissue integrity during recovery [4]. To prophylactically 
combat infection, clinicians have tried integrating various 
antibiotics, and more recently, metals as well as antimicrobial 
peptides into wound dressings [5,6]. The continual updates to 
dressing materials, renewed understanding of microbiology and 
of the physiology of healing as culminated in a greater confidence 
in wound treatment. Modern clinicians have countless choices in 
dressing the various wounds they encounter in their practices, 
each with their own advantages and drawbacks [7].

This review seeks to illuminate the major types of modern wound 
dressings and their respective applications, with a focus on their 
unique material and compositional characteristics. In this rapidly 
evolving field, it is imperative for future researchers to have an 
open mind and a special vision. This review hopes to inspire 
innovation and continual progress in the field of trauma and 
wound care. 

Bioactive dressings
Bioactive dressings are designed to enhance wound healing in 
addition to being biodegradable. To better fulfill this purpose, 
researchers used material that are well adapted and compatible 
with human tissue. Common materials used include collagen 
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and elastin, hyaluronic acid and chitosan [7]. The first three are 
some of the most abundant connective tissue proteins found 
in the human body. Chitosan is derived from chitin, a natural 
polysaccharide commonly found in arthropods. Chitin is extracted 
and deacetylated to become the more soluble chitosan, which 
is also cationic [8]. Like many other polysaccharides, chitin and 
chitosan were quickly applied to many areas of pharmacological 
research [9,10].

As early as the 1980s, researchers studied chitin for its use in non-
woven wound dressings [11]. There are several advantages to 
chitin as a dressing material, the first being its role in accelerating 
wound healing [12,13]. Chitin accomplishes this by adhering 
cut edges of skin together, tighter than fibrin glue. In addition, 
chitin-treated wound sites experienced more rapid granulation 
and subsequent epithelization. It should be noted that a more 
significant migration of inflammatory cells was present at chitin-
treated sites, with no evidence of phagocytosis of chitin itself 
[12]. Furthermore, chitin and quaternized chitosan-containing 
nanofibers were also shown to be effective at killing S. Aureus 
and E. Coli [14]. Electron microscopy evidence shows that these 
nanofibers’ antimicrobial mechanism includes hindering the 
adhesion of S. Aureus. Additional chemical modifications of chitin 
resulted in dibutyrylchitin (DBC), in an attempt to further improve 
biocompatibility [15]. Structural analysis of DBC revealed that it 
was less crystalline and had higher thermal stability than native 
chitin [16]. Perhaps the most important improved aspect of 
DBC is its high resistance to enzymatic degradation, which was 
studied via challenge by amylase, collagenase, and lysozymes 
[17]. Having both healing-enhancing properties and antimicrobial 
effectiveness makes chitin and its derivatives popular material 
candidates in modern non-woven, bioactive wound dressings. 
Researchers have also combined chitosan with collagen [18] and 
hyaluronic acid [19] in newer synthetic materials and studied 
their enhanced biocompatibility characteristics. 

One of the most successful bioactive dressings currently available 
is the Aquacel Ag®, produced by ConvaTec [20]. The composition 
and the various properties of Aquacel serves as prime examples 
of the current advances in the bioactive wound dressing field 
and serves as a beacon that may help inspire an even better 
path forward. The current iteration of Aquacel is the culmination 
of advancements in two key technologies, Hydrofiber® and 
Advantage®[20]. The dressing is made of non-woven sodium 
carboxymethylcellulose (NaCMC) infused with ionic silver (Ag+) 
[20,21]. NaCMC forms the basis of the Hydrofiber® technology, 
as its fibers absorb wound exudate upon contact to form a moist 
gel, which promotes wound closure and healing [22]. It should be 
noted that NaCMC is also commonly used in hydrocolloid dressings 
[23], which will be discussed in a later section. Meanwhile, 
the ionic silver is combined with Ethylenediaminetetraacetic 
(EDTA) and Benzethonium Chloride (BEC) using the Advantage® 
technology, which is designed to achieve sustainable action 
against microbes [24]. 

The NaCMC fibers achieves the goal of enhancing wound healing 
by three major mechanisms. The first is through exudate and 
fluid absorption. The NaCMC fibers will form a moist gel soon 
after adhering to the wet surface of a wound. Importantly, the 

absorption of exudate is achieved vertically only, lowering the 
risk of maceration [25]. With traditional bandages and dressings, 
the moisture absorbed often spreads beyond the area of the 
wound. Over an extended period, the wound and the area 
surrounding it becomes wrinkly and edematous. This macerated 
state of the surrounding skin is not conducive towards healing 
[26]. By limiting absorption to the vertical direction, Aquacel can 
ensure that while the wound itself is kept moist, the surrounding 
tissue is kept dry and non-macerated. The left half of the Figure 
1 demonstrates the wide diffusion of moisture in traditional 
dressings, resulting in maceration and edema of surrounding 
tissue, hindering wound healing [26]. The right half of the Figure 
1 demonstrates the vertical absorption of exudate in Aquacel Ag® 
as a result of Hydrofiber® technology, keeping the wound site 
moist, minimizing maceration of normal tissue and promoting 
healing. Diagram not drawn to actual scale. 

See Figure 1 for a demonstration of the unique vertical absorption 
mechanism that Aquacel employs. The second mechanism of 
NaCMC fibers to promote healing is through neat contouring of 
the wound [25]. With traditional dressings, dead space is quite 
commonly seen between the wound and the dressing fibers. Fluid 
and tissue debris that accumulate in this dead space creates the 
perfect environment for microbes to thrive, causing infections 
[27]. Aquacel’s neat contouring to the wound surface helps 
minimize dead space and thus ensure a smoother, uncomplicated 
recovery process. The last mechanism of NaCMC fibers in 
enhancing healing lies in the dressing removal process. The gel-
like nature of the Hydrofibers® minimally stick to the granulation 
tissue of the wound, thus preventing secondary damage common 
in the removal of traditional dressings [28].

The strategy that Aquacel employs to combat bacteria is ionic 
silver, which has long been proven to be an effective antimicrobial 
agent [29]. Silver does so through several mechanisms, including 
binding to bacterial DNA to prevent cell division, blocking nutrient 
transport and inhibiting energy production at the bacterial cell 
wall [30]. In Aquacel, ionic silver is compounded with EDTA and 
BEC, which enhances silver’s antimicrobial efficacy [24,31]. EDTA 
is often used to enhance antibiotic effects via prevention of 
bacterial aggregates and promoting the access of antimicrobials 
to the bacterium [32]. BEC reduces the surface tension of the 
dressing-wound gel interface, allowing EDTA and ionic silver 
better access to bacteria [33]. Aquacel compounds ionic silver 
with EDTA and BEC using Advantage® technology to achieve 
great efficacy against microbes, even Pseudomonas biofilms, 
commonly seen in nosocomial infections [34]. 

Mechanism of Aquacel Ag® in reducing maceration.Figure 1
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Aquacel can act as a great benchmark for the future development 
of bioactive wound dressings. Two central development strategies 
will likely still revolve around actively promoting wound healing 
and preventing infection. Aquacel is based on NaCMC, but 
future bioactive dressings may choose to employ chitin, collagen 
or elastin as adjunct in a new synthetic material [35]. If these 
components are indeed compatible, the ideal dressing would 
combine the controlled vertical absorption of NaCMC fibers with 
the greater biocompatibility of chitin and collagen. In terms of 
antimicrobial considerations, there are even more possibilities 
and opportunities. In addition to prophylactic antibiotics and 
silver nanoparticles, antimicrobial peptides are an interesting 
direction to explore [36]. In the setting of rapidly developing drug 
resistance among bacteria, treatment methods like antimicrobial 
peptides that can circumvent this resistance will be promising. 
Certain studies have already began exploring possibilities of 
incorporating these peptides into wound dressings among other 
applications [37,38]. 

Hydrocolloid dressings 
A hydrocolloid (HCD) is a two layered dressing surface that is 
opaque, transparent, biodegradable, and breathable. It can 
adhere over a wound with no separate taping to promote healing 
as a primary or secondary dressing [39]. The inner layer consists 
of self-adhesive gel-forming carboxymethylcellulose polymer, 
pectin, gelatin or an elastomer. The outer layer consists of 
polyurethane film that seals the wound to protect it from bacteria, 
foreign debris, and shearing [40,41]. This outer layer can either 
be occlusive or semi occlusive [42]. There are many types of HCD 
dressings. The fibrous type is the most popular and composed 
of sodium carboxymethylcellulose which form to become a gel 
when it comes into contact with any fluid [41]. Shapes and sizes 
vary for HCDs and they also are presented in paste, powder, or 
granule form [40].

In general, the mechanism of HCDs in wound healing is effective 
because the inner layer provides a moist environment, which 
promotes autolytic debridement, and the outer layer prevents 
contamination from bacteria and fluids. First, the HCD dressing 
is placed in contact with the wound. As the wound produces 
exudate, the inner layer absorbs the fluids and swells due to 
increased oncotic pressure to form a gel-like matrix structure. 
The retention of moisture facilitates an acidic environment to 
inhibit bacterial growth. Moreover, the inner layer pushes down 
on the wound, thus promoting fibrinolysis, angiogenesis, and 
healing without breaking down or softening the patient’s skin. 
Furthermore, the exudate that is absorbed will exert a pressure 
back onto the wound to reduce further exudate production. See 
Figure 2 for a simplified demonstration of this mechanism. The 
outer layer is speculated to play a role in trapping white blood 
cells that liquefy and prevent necrosis [39,40,42-45].

Indications of using HCDs include healing of partial and full 
thickness acute or chronic wounds by promoting autolytic 
debridement [42]. These wounds can include high friction areas 
(i.e. sacrum, heels) and prevent device-related pressure injuries 
in intubated ICU patients [42,46]. Although HCDs assume the 
shape of whatever they are placed onto, they should still be used 
in line and not to fill a wound cavity. This is because the HCD 

dressing may strip peri-wound skin if not changed frequently [44]. 
It is not recommended to use HCDs for healing of dry wounds or 
wounds with heavy exudation [40,42]. If a patient were to receive 
HCD dressing for a wound with excess exudate, it is important to 
remove the HCD prior to the occurrence of hypergranulation [47].

Reviewing literature suggests that the application of HCD 
dressings were most commonly associated with treatment of 
ulcers, but may also be beneficial for burns, skin donor sites, 
surgical/traumatic wounds, and pediatric/neonatal wounds. 
Some literature concludes that HCD is far superior to other 
conventional gauze dressings in healing ulcers [48-53]. However, 
other studies found no statistical significance between dressings 
in healing ulcers [54-57]. For burn treatment, HCD should be used 
for superficial burns without necrosis [58]. For skin donor sites, 
HCD offered better cosmetic results and accelerated healing rates 
compared to those of conventional dressing [59]. In addition, 
HCD can reduce pain and heal surgical and traumatic wounds 
faster than conventional dressing can [60]. Finally, for pediatric/
neonatal wounds, HCD is excellent for protecting pediatric skin 
and can mold into patterns suitable for smaller neonatal sizes 
[61,62].

Hydrogel dressings
Hydrogel wound dressings are hydrophilic polymers crosslinked 
by in-situ processes such as electrical fields, magnetic fields, 
temperature shift, pH shift, light intensity shift, radiation, addition 
of solvent, and shift in pressure [63,64]. Addition and removal of 
these processes causes a volumetric shift in the hydrogel, which 
can swell and reversibly compress back to original size [63]. They 
are highly flexible dressings with a water content similar to that of 
the body’s own soft tissues. The outer mesh of hydrogel dressings 
prevents microbial entry. Hydrogels serve as beneficial wound 
dressings because they control water loss from the wound, keep 
the wound moist, exchange gases with the atmosphere, are 
similar in consistency to soft tissue, and can be removed more 
easily than alternative dressings due to their non-adherent nature 
[64]. Hydrogels are set apart from alternative wound dressings 
by their 60-78% water capacity, which can rehydrate wounds 
to aid in autolytic debridement without the need for significant 
exudate release to maintain a gel composition [65-67]. Because 
they absorb only 14-28% of moisture from the wound, hydrogel 
dressings perform best when placed on lightly exuding or dry 

Mechanism of wound healing for HCD surface 
dressing.

Figure 2
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wounds, such as radiation wounds, ulcers, post-surgical incisions, 
a wide variety of burns, and even meningococcal purpuric 
macules [66,68]. Hydrogels can absorb some exudate; they also 
aid in fibroblast proliferation and keratinocyte migration in the 
wound site [64].

However, many hydrogels suffer from a low mechanical stability 
due to a tradeoff of viscosity for easy application and elasticity 
for continued flow after initial application [69]. Because of this 
tradeoff, as well as inconsistencies in macromolecular structure 
and low friction between polymer chains, Hydrogels tend 
to leak more than alternative wound dressings [70]. Water 
capacity, flexibility, and mechanical stability are major points 
of differentiation between extant hydrogels on the market 
[6]. Many hydrogels have improved their stability through an 
innovative composition. Double network hydrogels are a more 
stable gel which overlaps two distinct polymer networks, which 
can synergize to enhance factors like stability, tensile strength, 
and biocompatibility [71].

Since their invention by Wichterle and Lim in 1960, hydrogel 
composition has evolved to increase stability and to function 
as an effective delivery mechanism [72]. Poly (vinyl alcohol)-
hydrogel hybrids, which combine natural and synthetic polymers, 
are very common on the market [73]. Additionally, chitosan 
bioactive dressings and alginates, which are often utilized in 
hydrogels, are becoming increasingly popular. Manufacturers 
are moving away from propylene glycol, which can be a mildly 
irritating to certain patients [66]. Because the macromolecular 
network of hydrogel composition can replicate the extra-cellular 
matrix, biological components or antibiotics can be paired with 
hydrogels to be delivered to the wound in a time-release manner. 
Drugs can be added during the gelation process via entrapment, 
covalent linkage, or use of a micelle/liposome carrier [74]. As 
the hydrogel swells with moisture and exudate, or as a stimulus 
is applied, drugs are released from the gel into the wound site, 
as shown in Figure 3. The hydrophobic polymer chains (green) 
with cross-linkages (red) undergoes gelation with the drug 
(blue), which becomes entrapped in the hydrogel. The bottom 
half of the figure demonstrates three delivery mechanisms from 
left to right: Stimulus-mediated drug release, simple diffusion 
through the mesh and swelling release. The first mechanism 
involves a stimulus (magnetism, glucose, enzymes, electricity, 
light, radiation, pH, ultrasound, or temperature) applied to the 
hydrogel, which then promotes drug release. The second depiction 
shows the drug as it slowly diffuses out of the polymer chains in 
a time-release format. The last mechanism involves the hydrogel 
swelling with moisture and exudate from the wound. The influx of 
water then flushes out the drug from the now loosened polymer 
chains. This can be particularly beneficial in increasing patient 
compliance, thus improving therapeutic outcomes for those with 
chronic wounds [75]. With this advantage, hydrogel dressings can 
be further modified to be an effective mechanism for delivery 
of drugs, nanoparticles, enzymes, stem cells, or growth factors 
[76-78]. Because of this addition mechanism, some modern 
hydrogels such as DermaGel and Intrasite Gel have been proven 
to have a higher efficacy against Candida, Pseudomonas, and 
Staphylococcus infections than traditional dressings [66]. Other 
hydrogels even have enzymatic mechanisms built-in to fight 

Hydrogel dressing drug delivery mechanism.Figure 3

antibiotic resistance in bacteria [79,80].

Alginate dressings
Alginate is another biopolymer frequently used in wound 
dressings. Derived from the cell walls of brown algae species 
(Ascophyllum nodosum, Laminaria Hyperborean, Macrocystis 
pyrifera, Laminaria japonica, Laminaria digitate) as well as from 
some bacteria (Azotobacter vinelandii, Pseudomonas spp.) [81], 
alginate is a linear polysaccharide composed of β-(1,4) linked 
D-mannuronic acid (M) residues and α-(1,4)-linked L-guluronic 
acid (G) residues [82]. Alginate monomers are arranged of 
consecutive M-residues (M-Blocks), G-residues (G-Blocks), 
or alternating M and G residues (MG-Blocks) depending its 
source material [82]. The unique arrangement of these blocks 
is demonstrated in Figure 4 and determines the physical and 
biomechanical characteristics of the alginate polymer. The left 
side of the image illustrates the egg-box structure that forms 
from the binding of G-residues on opposite sides of the alginate 
polymer in the presence of divalent cations. This crosslinking of 
alginate polymers leads to the formation of alginate gels. The right 
side of the image illustrates the structure of M-Blocks, G-Blocks, 
and M-G Blocks that make up alginate monomers and give 
alginate its biologic and mechanical properties [82]. Increasing 
the M:G ratio stimulates cytokine production, leading to a greater 
immunogenic effect. Decreasing this ratio leads to a stiffer, more 
stable structure [83]. The monomeric units come together to 
form linear, unbranched polymers of alginate, which can then 
crosslink with divalent cations (Ca2+ and Ba2+) via ionic bonding to 
form alginate gels. In this process, G-residues on opposite sides of 
the polymer bind to each other, forming a diamond shaped “egg-
box” structure with a hydrophilic center that binds the divalent 
cations. 

Alginate dressings are formed from polymers of alginate coated 
in calcium and sodium salts [84], and ionic exchange between 
the dressing and wound exudate leads to crosslinking and the 
formation of alginate hydrogels [85]. Alginate is well suited for 
wound care because its features resemble those of the human 
tissue extracellular matrix while being naturally biocompatible 
[86], non-immunogenic [85] (if properly purified [83]), and 
affordable [87]. The strongly hydrophilic nature of alginate 
increases its capacity for wound exudate absorption (absorbs 
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15–20 times its weight in fluid) [88]. It provides the wound with 
a moist microenvironment to promote healing [89], and confers 
protection against bacteria [90,91]. The high absorption capacity 
makes these types of dressings useful for minimally, moderately, 
and heavily exudative wounds [92-96] as well as chronic wounds 
[97,98]. The release of calcium ions in alginate dressings 
activates platelets, improving alginate’s hemostatic capabilities 
and making it effective for the management of bleeding wounds 
[99,100]. These biological and chemical properties of alginate 
work together to increase the efficacy of wound healing [90,101]. 

Different nanomaterials can also be added to alginate gels to 
increase their antimicrobial capabilities or to promote tissue 
growth. Alginate has been combined with nano zinc oxide [102], 
silver nanoparticles [103,104], ammonium salts [105], chitosan 
[106], or loaded with antibiotics such as moxifloxacin [107] and 
ampicillin [108]. Simvastatin-incorporated alginate has shown an 
ability to upregulate hypoxia-inducible factor-1α and vascular 
endothelial growth factor, leading to increased angiogenesis 
[109]. Amniotic fluid loaded into alginate led to greater wound 
healing by increasing cell proliferation and spreading. It also led 
to a greater degree of collagen secretion at the wound site [110].

Despite is many advantages, alginates’ relatively poor mechanical 
properties [111,112] necessitate that they be combined with 
synthetic and natural polymers to improve their stability [113,114]. 
One ionic polymer that is frequently combined with alginate 
is chitosan, and ionic crosslinking between the two polymers 
leads to increased hydrogel structural stability [97,115-118] as 
well as stronger antimicrobial properties [106,119]. Alginate 
has also been combined with gelatin [120-122], nanocellulose 
[123], bioglass/agarose [124], carboxymethyl chitosan [125,126], 
and polyacrylamide [127] to improve its mechanical stability. 
Another biomechanical limitation of alginate is that higher 
molecular weight alginate strands cannot be broken down due 
to a lack of mammalian alginate-degrading enzymes. Oxidizing 
the M and G residues of alginate has been shown to increase the 
biodegradability of alginate [128].

While alginate hydrogels are the most commonly used form of 
alginate wound dressing, additional forms of alginate-based 
dressings include foams, wafers, films, membranes, nanofibers, 
and sponges [85]. All these different forms of alginate contain 

its innate properties of biocompatibility, non-immunogenicity, 
and high absorption capacity. Alginate foams are also easy to 
apply, with minimal discomfort to the patient and conveniently 
removable from the wound site [129]. They also have an extended 
hydration time, large surface area, a high degree of porosity, and 
can be loaded with bioactive agents [130]. Freeze-drying alginate 
polymer solutions via the lyophilization method results in solid, 
porous wafers whose structure resembles foam dressings but 
turn into a gel upon coming into contact with wound exudate 
[131,132]. Alginate based films and membranes can be used 
as dressings, but are not effective for wounds with high levels 
of exudate [7,99]. Nanofibers have shown some potential as an 
alginate-based wound dressing due to their ability to improve 
epithelial cell proliferation and tissue formation [35], promote 
hemostasis [133], and their strong biomechanical [134] and 
antimicrobial [135,136] properties, but they are currently both 
difficult and expensive to produce [137,138].

The future of alginate dressings is likely going to focus on testing 
the loading and releasing of various bioactive molecules to 
wound sites to better optimize the dressing’s tissue repair and 
antimicrobial effects. Currently, alginates loaded with a single 
antibiotic show much faster rates of drug delivery than dual-
antibiotic loaded alginate dressings, but microfluidic technology 
could produce pH-responsive alginate composites with a greater 
ability to deliver dual-antibiotics [139]. Modification of alginate 
to be more biomechanically stable and biodegradable while 
maintaining its absorptive capabilities will also likely be a key area 
of focus in the bioengineering of novel alginate dressings [89]. 
Lastly, if the clinical effectiveness of alternative forms of alginate 
dressings can be increased while simultaneously decreasing their 
production cost, their usage may become significantly more 
widespread [85].

Semi-permeable film dressings
Semi-permeable film dressings are non-porous, flexible, thin, 
and transparent, sheets of polyurethane covered with an 
adhesive layer that allows the dressing to adhere to the skin. 
These polyurethane sheets are permeable to gas such as O2 and 
CO2, but impermeable to liquid and microbial organisms. Semi-
permeable dressings prevent microbial migration and protect the 
wound. They are intended for simple superficial injuries such as 
lacerations, burns and abrasions. 

As a flexible sheet, semi-permeable film dressings: (i) easily 
adhere to the skin, (ii) allow for evaporation of moisture, (iii) 
relieve pain, (iv)act as barriers from the external environment 
(v) allow for easy inspection of wound without dressing removal 
[140]. In terms of disadvantages, semi-permeable films can cause 
injuries on removal and can pool exudate on the wound when 
used as a secondary dressing. Furthermore, semipermeable films 
are non-absorptive dressings, and inappropriate dressing choices 
can lead to the damage of the surrounding skin and, increasing 
risk of infection.

Semi-permeable films can be used as primary dressing or secondary 
dressings when applied simultaneously over an exudate, such as 
a foam. When applied as a secondary dressing, semi-permeable 
films act as a protective cover for the wound. In surgery, semi-

Molecular composition of calcium alginate dressings’ 
egg-box structure.

Figure 4
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permeable films can be used to protect postoperative wounds 
and have been more cost effective and efficient compared to 
traditional gauze dressing [84]. The use of semi-permeable films 
serves as a barrier to external contamination. Further, this barrier 
prevents microbials entrance and infection. As a result, the 
wound can easily self-heal without the infringement of external 
factors. Additionally, semipermeable film dressings are beneficial 
in preventing and managing of radiation-induced skin reactions, 
such as radiation dermatitis of different grades [141].

Some semi-permeable film dressings currently on market are 
Biofilm, Biooclusive, Hydrofilm, Mepilex Film, OpSite, OpSite 
Flexifix Gentle and Tegaderm [142]. These products are used for 
light abrasions or postoperative sutured wounds. Films can be 
maintained in place for up to seven days, and the replacement 
period may depend on the size and type of the wound.

A future enhancement of semi-permeable film dressing is an 
ozone generating system film dressing [143]. Wearable and 
flexible ozone (O3) generating system has been suggested to 
treat non-healing and critically infected wounds by providing 
strong antibacterial properties while accelerating local tissue 
regeneration. Ozone is known to inactivate bacteria, viruses, 
fungi, yeast, and protozoa through the oxidation of phospholipids 
and lipoproteins in the cell envelope, which can weaken or destroy 
bacterial walls [143]. Further, the presence of ozone activates 
fibroblast growth factors, triggers angiogenesis, and promotes 
tissue regeneration [144]. The ozone generating system proposes 
a multilayered patch that utilizes the characteristics of ozone 
against microbials and treat chronically infected wounds. This 
system works by uniformly dispersing a small amount of ozone 
to the site of infection or wound via a portable device, which is 
demonstrated in Figure 5. This figure demonstrates the various 
layers of the ozone-enhanced wound dressing system as outlined 
by Roth et al. PDMS is the abbreviation for Polydimethylsiloxane, 
an organosilicon compound that confers hydrophobicity. This 
patch thus incorporates a hydrophobic and highly ozone-
permeable outer layer and an inner dispersion layer for more a 
more uniformed gas distribution [143]. Figure is not drawn to 
actual scale. 

Research has shown that a small amount of ozone is cytotoxic 
to antimicrobial resistant strains bacteria, P. aeruginosa and S. 
epidermidis, but noncytotoxic to human basal skin cells [143]. 
However, a drawback of such a system is that it requires a sizable 
portable device that is only likely to be available in clinic settings 
[143]. In prospect, the development of a portable ozone semi-
permeable film would significantly enhance the management of 
chronically infected wounds against resistant microbes. 

Another notable approach to semi-permeable films would be 
incorporating it with nanomaterials-based film dressings [84]. 
Nanomaterials (NMs) can be designed to have antibacterial, 
anti-inflammatory, proangiogenic, and proliferative properties 
[84]. Additionally, NMs can modulate the expression of essential 
proteins and signal molecules to improve wound healing 
processes. Research has proposed that a nanofiber-based semi-
permeable film dressing can be used at the site of injury. Nano-

fibrous membranes can detect changes in pH of an injured site 
and release antibiotics and other drugs to enhance wound 
healing.

Concluding Remarks and Outlook
Understanding the subtle differences between wound dressings 
can potentially help the clinician achieve a better outcome for 
his/her patient, whether that is a less painful recovery, a shorter 
hospital stay, or in the most emergent of cases, decreased 
mortality [145]. However, it is also impossible for every practicing 
physician to memorize information about every type of wound 
dressing available in the market. Thus, this review aims to inform 
clinicians about the most significant aspects of each major 
category of trauma dressing. It goes into detail regarding their 
material and compositional characteristics for those that are 
more concerned. 

The preeminent goal in the development of trauma dressings 
would be to create one that is highly adaptable and effective for 
the widest range of wound conditions. For example, combining 
the biocompatibility of bioactive dressings with the non-irritant 
properties of hydrogels and exudate-suppressing qualities of 
the hydrocolloids [7,12,146]. This may be impossible at present 
due to the inherent limits of material synthesis technology, but 
may become a reality soon, with the advent of novel methods of 
creating more complex composites. Currently, most advancement 
in the field comes from discoveries of new materials that 
enhance healing or inhibit microbial activity [43]. This serves as a 
solid foundation for the next significant phase in wound dressing 
research- the mixing and matching of such materials in search 
for the most efficacious composite or synthetic. Given the dire 
current situation regarding the Covid-19 pandemic [147-149], 
investments in the biotech field is surging, helping to accelerate 
microbiology research in the near future. 

There will be tense competition in the arena of future trauma 
dressing research. However, this competition can be “synergistic” 

Enhancement of semi-permeable film dressings using 
ozone production system.

Figure 5
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and help the industry flourish. The copious number of materials 
studied now can will translate to countless future opportunities. 
Creation of newer, better and more affordable wound dressings 
will benefit millions of patients around the world and perhaps 
even revolutionize acute trauma care. 
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