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Abstract
Background: Atherosclerosis and related cardiovascular
diseases remain the leading cause of mortality and
morbidity worldwide. Atherosclerosis development involves
several pathological processes, including alterations of the
blood lipid profile, chronic inflammation and
thrombogenesis. The existing therapies for atherosclerosis
are aimed at normalization of the lipid profile, reduction of
cardiovascular risks and inflammation and alleviation of
symptoms. Despite the certain progress made in the field,
more efficient and direct approaches are needed to battle
the disease effectively. Enzymes that are up-regulated or
play key roles in various pathologies are traditionally
regarded as potential therapeutic targets.

Methods and findings: We searched MEDLINE for recent
articles reporting on the three enzymes that are involved in
atherosclerosis development: matrix metallo-proteinases,
neuraminidase/sialidases and NADPH oxidases. These
enzymes participate in matrix remodeling, atherogenic
modifications of LDL particles, and oxidative stress
correspondingly.

Conclusion: The enzymes involved in atherosclerosis
development, such as metalloproteinases, sialidases, and
NADPH oxidases, appear to be potential therapeutic targets
for the disease prevention and/or treatment. However,
more selective and potent inhibitors of these enzymes need
to be discovered before they become relevant for clinical
treatment of atherosclerosis.
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Introduction
Atherosclerosis underlies a large part of cardiovascular

diseases that remain the leading cause of morbidity and
mortality worldwide. The main pathological feature of
atherosclerosis is the formation of atherosclerotic plaques in the
vessel wall. Atherosclerotic lesions are induced by local
disturbances of vascular endothelium that often occur in
atheroprone sites, such as bifurcations or bends of the vessel
[1]. In these sites, endothelium becomes activated, which
increases its permeability and stimulates the recruitment of
circulating immune cells. Consequently, accumulation of cells
and lipids takes place in the subendothelial layer of the vessel
wall, resulting in its significant thickening. Growing plaques can
reduce the vessel lumen and provoke ischemia by themselves,
but more dangerous are so-called unstable plaques that trigger
thrombogenesis on their surface. Thrombus formation in the
major arteries can lead to sudden and fatal events [2,3].
Pathogenesis of atherosclerosis is a multifactorial process that
includes inflammatory response, oxidative stress, and changes in
lipid metabolism. Atherosclerosis is associated with alterations
of blood lipid profile, with increased levels of Low-Density
Lipoprotein (LDL) cholesterol, which serves as the major source
of lipid accumulation in the arterial wall. Inflammatory process is
another pillar of the pathology, with immune cells participating
in lipid storage giving rise to foam cells that constitute the
cellular mass of the growing plaque. During the recent years,
numerous signaling proteins, enzymes, biomarkers and genes
involved in the pathology have been identified, and the list is
steadily growing [4-6].

Enzymes are traditionally regarded as potential therapeutic
targets, since can often be selectively inhibited or inactivated by
small molecules. In the case of atherosclerosis, inhibition of
cholesterol biosynthesis by blocking 3-methylglutaryl-CoA with
statins is widely used in current clinical practice [7]. Statins are
known to possess not only cholesterol-lowering, but also anti-
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inflammatory properties, and were shown to stabilize and even
regress atherosclerotic plaques. However, they prove not to be
sufficient for effective reversal of the atherosclerotic process
once it is established, and novel therapies are urgently needed
to act at the level of the arterial wall and atherosclerotic lesions.
Several enzymes are known to be involved in atherosclerosis
initiation and progression at the level of the arterial wall,
including metalloproteinases [8], neuraminidases/sialidases
[9,10] and NADPH oxidases [11]. In this review, we attempted to
summarize the existing information on these enzyme types
based on recent articles indexed in MEDLINE.

Metalloproteinases
Metalloproteinases have a metal (zinc) atom in the catalytic

center and a conversed methionine in the catalytic domain.
Three families of metalloproteinases have been described: A
Disintegrin and Metalloproteinases (ADAMs), A Disintegrin and
Metalloproteinases with Thrombospondin Motifs (ADAMTSs)
and Matrix Metalloproteases (MMPs) [12]. The big family of
human MMPs consists of 23 members, including 14 that are
expressed in the vascular system [13]. MMPs are commonly
classified based on the substrates they cleave to collagenases,
gelatinases, martrilysins, stromeolysins and others. Membrane-
type MMPs have a transmembrane domain or GPI anchor and
are therefore attached to cellular membranes. MMPs play an
important role in tissue remodeling and regeneration, as well as
in organ formation. In the adult organism, MMPs take part in
such processes as neovascularization. By cleaving extracellular
matrix constituents, they ensure recycling of matrix proteins.
However, MMPs also participate in a wide range of pathologies,
including cancer and atherosclerosis, and therefore represent
interesting therapeutic targets [14].

In atherosclerosis, MMPs play a special role, since they
process the components of extracellular matrix in the plaque.
Different members of MMP family are playing varying roles in
atherosclerosis progression. Studies have shown that gelatinases
MMP-2 and MMP-9 and stromelysin MMP-3 contribute to
vascular smooth muscle cell migration and plaque growth, and
are associated with increased carotid Intima-media Thickness
(cIMT) [15]. At the same time, martrilysin MMP-7,
metalloelastase MMP-12, collagenase MMP-13 and a membrane
type metalloproteinase MMP-14 are associated with the activity
of monocytes and macrophages and contribute to the loss of
extracellular matrix proteins from the fibrous cap of the
atherosclerotic plaque, apoptosis of cells present in the cap, and
plaque destabilization [8,15,16]. However, for some MMPs, such
as MMP-3 and MMP-9, protective functions have been
demonstrated in mouse models of atherosclerosis [16].

Enhanced expression and elevated activity of MMP-1, MMP-8
and MMP-13 were demonstrated in atherosclerotic plaques,
associated with Endothelial Cells (ECs), smooth muscle cells and
macrophages [17-19]. Polymorphisms in the promoters of the
genes encoding these enzymes are associated with aortic,
carotid and coronary atherosclerosis [20-23]. Moreover, in
unstable plaques, increased collagenolytic activity has been
observed, that could be attributed to MMP-1, MMP-8 and

MMP-13 [17,19]. Enhanced level of MMP-8 in plaques and
plasma were predictive of systemic cardiovascular events [24].

Despite being attractive potential therapeutic targets, MMPs
have only limited clinical relevance so far. Synthetic MMP
inhibitors have been evaluated in clinical trials in patients with
cancer and rheumatoid diseases, but were found to be
associated with significant toxicity. One MMP inhibitor relevant
for cardiovascular diseases that received FDA approval is
doxycycline, which down-regulates several MMPs and allows
attenuating cardiac inflammation and abnormal tissue
remodeling after myocardial infarction [25,26]. Its application is,
however, limited to short-term treatment. Further efforts should
be focused on identification and evaluation of more selective
MMP inhibitors, that might have a better safety profile and more
targeted mode of action in atherosclerosis [27].

ADAM metalloproteinases were also found to play a role in
atherosclerosis development. These membrane-bound
proteinases are responsible for shedding, or release of various
peptides and proteins from the cell surface to the extracellular
space, and for cleavage of different substrates present in the cell
membrane, including adhesion and signaling proteins. Increased
levels of ADAM9, ADAM10, ADAM15, ADAM17, and ADAM33
were observed in atherosclerotic plaques [28,29]. ADAM10 was
shown to play an important regulatory role in vascular
permeability and transmigration of T-cells [30]. ADAM17 is
known to be involved in the pathogenesis of various
inflammatory diseases, including atherosclerosis, by cleaving
membrane-bound signaling molecules. This metalloproteinase
has been identified as an attractive potential therapeutic target
[31]. ADAMTs are capable to cleave proteoglycans, which makes
them important players in atherosclerotic lesion development
[32]. Pre-atherosclerotic adaptive intimal thickenings and early
lesions are enriched with proteoglycans that facilitate
monocytes and macrophages recruitment to the growing lesion
and increase lipid retention in the subendothelial space [33].
ADAMs, especially ADAM10 and ADAM17, have been considered
as potential therapeutic targets for many years already, and
numerous inhibitors were tested in pre-clinical settings.
However, all of them, except one, failed to enter the level of
clinical trials [34]. Future studies should focus on the
development of novel ADAM inhibitors with improved potency
and tolerability.

Sialidases
Sialidases, or neuraminidases, are glycosidases that catalyze

the removal of α-glycoside bonds that link terminal sialic acid
residues to carbohydrate chains of glycoproteins and glycolipids
[35,36]. Neuraminidases are commonly present on the surface
of bacteria and viruses that use these enzymes to facilitate
interaction with host cells. Viral neuraminidases have different
sensitivity to inhibitors than mammalian neuraminidases, and
are widely used as therapeutic targets. In mammals, four types
of sialidases have been described: NEU1 (lysosomal sialidase),
NEU2 (cytosolic sialidase), NEU3 (membrane sialidase) and
NEU4 (mitochondrial sialidase). These enzymes are encoded by
different genes and also have different properties, such as
subcellular localization, pH-optimum, substrate specificity and
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stability [36,37]. Altered activity of human sialidases is
implicated in various pathologies, including cancer, which
remains the best studied to date [38], neurological and
cardiovascular diseases. Modulation of human sialidase activity
is therefore regarded as potentially valuable therapeutic
approach for treatment of several disorders, including
atherosclerosis [39,40]. In atherosclerotic plaques, NEU1 was
shown to be involved in atherogenesis through generation of
elastin-derived peptides that attract immune cells and promote
the local inflammatory response [41]. The information on the
involvement of other mammalian neuraminidases in
atherosclerosis development remains very limited. However,
there is accumulating evidence that desialylation of LDL particles
in the blood plasma performed either by trans-sialidases may
play a crucial role in the pathology.

Studies of atherogenic modifications of LDL that provoke lipid
accumulation in the arterial wall cells resulted in the discovery
of desialylated LDL present in circulation [42]. The enzyme
responsible for this modification has been identified as trans-
sialidase, which is present and active in human blood plasma
[43]. Incubation of native LDL samples with purified trans-
sialidase in vitro resulted in LDL desialylation and increase of
atherogenicity. Reduced level of sialic acids was also
demonstrated in LDL samples treated with bacterial silidase.
Desialylated LDL corresponds by its characteristics to small
dense electronegative LDL, which is also prone to oxidation and
is known to be associated with atherosclerosis [44].
Desialylation of LDL is associated with enhanced cholesterol
uptake by macrophages and in lipid accumulation in human
aortic smooth muscle cells [45]. It is likely that desialylation is an
early even in the cascade of atherogenic modifications of LDL
that include oxidation. Sialic acid has been demonstrated to
serve as a potent free radical scavenger, therefore playing an
important role in regulating oxidative stress [46,47].
Interestingly, administration of exogenous sialic acid had a
protective effect in a mouse apoE-/- model of atherosclerosis,
reducing the plaque formation and the level of plasma
triglycerides and cholesterol [48]. These findings highlight the
link between desialylation and oxidative stress associated with
atherosclerosis.

Human trans-sialidase transfers sialic acid residues from
sialoglycoconjugates to various acceptor glycoconjugates. Trans-
sialidase is able to cleave residues of sialic acid from
glycoconjugates present in LDL, Intermediate Density
Lipoprotein (IDL), Very Low-Density Lipoproteins (VLDL) and
High-Density Lipoprotein (HDL), and to transfer them to a range
of acceptors that are present in blood plasma [49,50].
Physiological role of trans-sialidase in human plasma remains
unclear [51]. It was shown that sialidases can modify properties
of a range of blood cells types and lipoproteins [52]. Data
obtained on C57Bl/6 mice demonstrated that expression of
hypomorphic sialidase influenced lipoprotein metabolism. Such
expression, specifically in blood cells, was sufficient to attenuate
atherogenesis. Moreover, treatment with sialidase inhibitor, 2-
deoxy-2,3-dehydro-N-Acetylneuraminic acid (DANA) resulted in
attenuated atherosclerosis development in apoE-/- mice.
Hypomorphic sialidase expression was associated with increased
monocytic cholesterol uptake and macrophage cholesterol efflux

to High-Density Lipoprotein (HDL). Therefore, hypomorphic
sialidase expression appeared to be atheroprotective in C57Bl/6,
apoE-deficient and ldlr-deficient mouse models [52].

Therefore, sialidases appear to play an important function at
the initial stages of atherosclerosis, most importantly, through
participation in the formation of atherogenic modified LDL
species and through the possible link with oxidative stress.
Development of selective and efficient inhibitors of sialidase
activity in the blood plasma could provide an interesting
therapeutic opportunity for atherosclerosis prevention.

NADPH Oxidases
As described above, oxidative stress plays an important role in

atherosclerosis progression [53]. One of the best studied effects
is the formation of oxidized LDL during oxidative stress and
therefore generation of atherogenic LDL species [11,54]. Integral
membrane proteins NADPH oxidases (NOX) are major producers
of Reactive Oxygen Species (ROS). They are widely expressed in
the vasculature and are present in platelets. In humans, 7 NOX
enzymes are known (NOX 1-5, DUOX1 and DUOX2), all of them
sharing a common mechanism of action, but possessing distinct
regulatory mechanisms [55]. NOX were first identified in the
membranes of “professional” phagocytic cells of the immune
system. In these cells, ROS play an important role participating in
host defense and mediating killing of pathogens [56]. Later,
presence of NOX enzymes was revealed in non-phagocytic blood
cells and other cell types, including endothelial cells and smooth
muscular cells. In non-phagocytic cells, ROS play primarily
signaling role and NOX expression and ROS generation are
maintained at low levels. However, NOX expression can be up-
regulated in response to mitogenic and transforming growth
factors, as well as under some pathological conditions, such as
hyperlipidemia or hyperglycemia [57,58]. In the vascular system,
NOX 1, NOX 2, NOX 4, and NOX 5 are expressed in the
endothelium, vascular smooth muscle cells, fibroblasts and
perivascular adipocytes. Other isoforms either are present at
very low levels or have not been found and their significance has
not been determined [57].

In atherosclerosis, NOX were shown to contribute to virtually
every stage of pathology development, including atherogenic
modification of LDL, endothelial dysfunction, recruitment of the
immune cells to the growing lesion and thrombogenesis on the
surface of unstable plaques [58]. Calcium-dependent NOX5 is a
major source of ROS in atherosclerosis and is involved in the
oxidative damage associated with the disorder. Levels of NOX5
mRNA and protein are significantly increased in coronary
arteries obtained from patients that suffered from coronary
artery disease compared to healthy arteries, and these data
correlate with the Ca2+-dependent NADPH oxidase activity in the
arteries. Expression of NOX5 was found in the endothelium of
early-stage lesions and in vascular smooth muscle cells in the
intima of advanced coronary lesions [59]. ROS generated by
NOX2 is predominantly detected in the endothelium and
adventitia, while NOX1 and NOX4 are important for vascular
smooth muscle cells functioning due to the fact that expression
and activity consequently vary with the disease progression. The
differential way of ROS generation by functionally distinct NOX
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isoforms that are expressed in different vascular cell types may
be used as a therapeutic advantage [60]. Inhibitors of NOX
family members can be considered for the development of
future anti-atherosclerosis therapies [61]. Over the years,
several candidate inhibitors of NOX (besides the agents that
enhance NO generation and therefore act indirectly) have been
identified. However, few of them made it into clinical practice
[62]. One of the promising NOX inhibitors extracted from plants,
apocynin, is also characterized by low toxicity, and therefore
appears to be interesting for the development of therapies
against cardiovascular diseases [63]. More studies are needed to
develop safe and specific ways of NOX inhibition for long-term
treatment of atherosclerosis and related disorders.

Conclusion
Several human enzymes with very distinct properties have

been demonstrated to play important roles in atherosclerosis
development. In this review, we focused on three groups of
enzymes: MMPs, sialidases and NOX, all of them currently
considered as relevant therapeutic targets. Although certain
progress has been achieved in the development of selective
inhibitors of these enzymes relevant for clinical practice, more
studies are needed to improve the characteristics of these
molecules and reduce their toxicity. Better understanding of the
role of each enzyme isoform in the development of different
stages of atherosclerosis will inform the search for selective
inhibitors.
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