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Abstract: Coastal wetlands are important stepping stones and wintering sites for migratory birds along the 
East Asian-Australasian Flyway (EAAF). But wetlands are being extensively converted throughout 
Southeast and East Asia, and continued loss can disrupt the long-distance migrations, and result in 
species population declines and extirpations. Wetlands are also under threat from global climate change; 
sea level rise can inundate coastal wetlands, and the two forces of coastal development and climate 
change can subject the remaining wetlands to coastal squeeze. Therefore important wetlands along the 
flyway should be assessed for the impacts of climate change to implement proactive climate adaptation 
strategies. The Mai Po Inner Deep Bay Ramsar site in Hong Kong is an important staging and wintering 
site along the EAAF. A climate model for this wetland showed that by 2100 some of the wetlands and 
mudflats used by migratory birds could become inundated. In the future, under climate change scenarios, 
fishponds further inland, now within the ‘wise-use’ compartment of the Ramsar site, could represent 
supratidal wetlands for migratory birds. Therefore, these fishponds should be maintained and managed 
without the threat of conversion by providing economic incentives for fishpond operators. This analysis 
represents a case study for climate proofing the EAAF by engaging fishpond owners and operators for 
sustained management of coastal fishponds as an integrated approach for wetland management that 
includes aquaculture, sustainable livelihoods, bird habitat conservation, and climate-proofing coastal 
area.
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mudflats and coastal mangroves if the current accretion 
levels of 8 mm/yr or more continues into the future  
(Figures 2 and 3). However, if accretion levels decrease to 
4 mm/yr, as expected because of sediment trapping behind 
major dams on the Pearl River [14], the tidal flats are 
expected to be inundated even during low tide, with over 
77% being lost as habitat for wading and shorebirds (Figures 
2 and 3). Mangroves, however, will remain relatively 
unaffected. If accretion levels drop to 2 mm/yr >50% of 
the coastal mangroves could be lost because of permanent 
inundation of the coastal areas, even during low tide. Under 
the high tide scenarios, with 1.5 m SLR, over half of the 
regularly flooded marshes inside the nature reserve will also 
be inundated even with an 8 mm/yr accretion rate and less 

.

Under a more extreme 2 m SLR scenario, during low 
tide, there could be 77% and 57% loss of tidal flats and 
coastal mangroves, respectively, with an 8 mm/yr accretion 
rate (Figures 2 and 3). The regularly flooded marshes in 
the nature reserve will also lose 56% of area. During high 
tide most of the marshes, mangroves, and tidal flats will be 
underwater (Figure 4).

Discussion

As an important steppingstone and wintering wetland for 
waterbirds along the EAAF, Mai Po Inner Deep Bay Ramsar 
site represents a case study of how impacts of climate 
change and sea level rise can affect the coastal wetlands 
along the EAAF. The 1,500 ha Ramsar site is comprised 
of tidal mudflats, coastal mangroves, marshes, and 
fishponds with a 380 ha nature reserve zoned as a core area  
(Figure 1). Currently there are several active, commercial 
fishponds that surround the nature reserve, in an area 
designated as a Wetland Conservation Area (Figure 1). As 
part of the wise-use compartment of the Ramsar Site, these 
fishponds are meant to add ecological value to the nature 
reserve while providing sustainable livelihoods to the pond 
operators from the local communities. 

But the climate model analysis shows that much of the 
existing wetland habitats in the nature reserve and tidal 
flats could become unavailable by the end of the century 
even under conservative projections of change, reduce 
the capacity of the Ramsar site to support the numbers 
of waterbirds that currently use it. The climate model 
also shows that some fishponds in the Ramsar site will 
be relatively less impacted by SLR (Figures 3 and 4). 
Managing these fishponds, rather than converting them 
to other land uses, should be a climate change adaptation 
strategy for Mai Po, since they would represent the wetland 

Introduction
Coastal wetlands are important stepping stones and 

wintering sites for migratory birds that use the East Asian-
Australasian Flyway (EAAF) [1-4]. But these wetlands 
are being extensively and rapidly converted throughout 
Southeast and East Asia for development [5]; for example, 
over 65% of the intertidal mudflats in the Yellow Sea, one 
of the more important staging areas along the flyway, have 
been lost in recent decades [6]. Continued loss can disrupt 
the migration that has evolved over millennia, and species 
population declines and extirpations. But these wetlands 
are also under threat from global climate change and its 
consequences, notably sea level rise (SLR) and extreme 
storms that are accompanied by stronger wave and tidal 
surges [7,8]. The two forces of coastal development and 
climate change can subject the remaining wetlands to coastal 
squeeze [9-11]. Thus, important, existing wetlands along 
the flyway should be assessed for the impacts of climate 
change to plan and implement proactive climate adaptation 
strategies. These analyses should be conducted at site 
scales to identify site-scale conservation strategies based 
on habitat availability, current and planned landuse, and 
restoration opportunities before options for conservation 
and restoration disappear.

The Mai Po Inner Deep Bay Ramsar site in Hong Kong 
(Figure 1) is one such important staging and wintering 
site along the EAAF. Rising sea levels and stronger storm 
surges expected with climate change [12,13] and shrinking 
mudflats because of declining coastal nourishment caused 
by upstream sediment trapping [14] can combine to decrease 
the availability of these coastal habitats for the waterbirds 
in Mai Po in the future. In order to inform a climate 
adaptation plan for the Ramsar site, Wikramanayake et al. 
[15] modelled the impacts of climate change and decreasing 
sedimentation rates on the important bird habitats in the 
Mai Po Inner Deep Bay Ramsar site. The authors used the 
SLAMM (Sea Level Affecting Marshes Model) version 6.7 
[16] to simulate habitat conversion under selected sea-level 
rise scenarios for coastal areas in the Mai Po Inner Deep 
Bay Ramsar site and the adjacent areas. 

Literature Review
Model outputs

The model outputs indicate no significant impact to the 
habitats in Mai Po until after 2075, but the 2100 projection 
shows an overall impact on the mangroves, marshes and 
tidal flats. Under a conservative 1.5 m sea level rise (SLR) 
scenario, at low tide there was little change in the tidal 

(Figures 2 and 4)
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Figure 1A: Is the locator map for the Mai Po inner deep bay Ramsar site in relation to the deep bay. The Shenzhen River borders the northern boundary of the Wetland 
conservation area.

Figure 1B: Shows the major habitat types used in the SLAMM analysis.



Journal of FisheriesSciences.com Wikramanayake E et al., 15(S1-003): 019-025 (2021)

Journal abbreviation: J FisheriesSciences.com

22

 
Figure 2: Changes to wetland habitats in the Mai Po inner deep bay Ramsar Site under 1.5 and 2 m sea level rise (SLR) scenarios and different sediment accretion rates in the 
offshore mudflats as projected by the SLAMM. Percent losses are given for low and high tide. Projection is for 2100.

Figure 3: Climate model outputs for low tide changes to habitats under 1.5 m sea level rise and 15 mm, 8 mm, 4 mm and 2 mm/year accretion rates by 2100.
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Figure 4: Climate model outputs for high tide changes to habitats under 1.5 m sea level rise and 15 mm, 8 mm, 4 mm and 2 mm/year accretion rates by 2100.

habitats for birds under future climate change scenarios. 
With the conversion of natural wetlands to fishponds, even 
now the latter serve as supratidal habitats for waterbirds 
during high tide in many stopover sites and wintering 
areas across the flyway [17]. But most of these fishponds 
are privately owned and operated. With increasing price 
competition for pond fisheries, the operators are beginning 
to abandon maintenance and management of fish ponds. 
Without the necessary management, the fishponds can be 
overgrown with reeds and sedges, and eventually undergo 
natural succession into dry lands. 

The relevance to the flyway

Mai Po is only one steppingstone along the vast flyway. 

There are hundreds of other such wetlands that are also 
threatened by encroaching infrastructure and climate 
change [4,6,18,19]. Strategically located wetlands are 
essential steppingstones to make the flyway functional for 
bird migrations [2-4]. Therefore, we recommend that this 
analysis be applied to other wetlands that serve as important 
staging or wintering sites along the EAAF to inform 
flyway-scale climate adaptation strategies that will enable 
the migrations to persist.

Wetlands are important for more than bird migrations.

Coastal ecosystems are among the most productive and 
important ecosystems in the world [20]. But they are being 
extensively converted to other anthropogenic land uses in 
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Hong Kong and throughout the region [6]. In addition to 
supporting high biodiversity and being important to support 
bird migrations, they also provide a range of ecosystem 
goods and services, including reducing flooding, protecting 
shorelines from wave and tidal surges expected from severe 
weather events due to climate change [21]. Therefore, 
climate-smart land use strategies that prevent the conversion 
of wetlands and promote effective management of supra tidal 
artificial wetlands can increase coastal resilience and reduce 
the vulnerability of coastal communities and infrastructure 
from the consequences of SLR and storms [21-27]. 

Conclusion

In the Greater Bay Area of the Pearl River, rapid 
economic development and population growth over the 
past four decades have resulted in extensive conversion and 
fragmentation of natural coastal habitats. Thus, forward-
looking, proactive land-use planning to conserve the existing 
coastal wetlands and preventing further conversion as an 
integrated climate response can be facilitated and informed 
by similar climate impact analyses at scale. However, this 
should happen now, before available options become lost 
to the coastal squeeze of anthropogenic drivers of land use 
change and SLR from the landward and seaward sides, 
respectively.
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