
1© Copyright iMedPub | This article is available in: http://www.hsj.gr/

2022
Health Science Journal

ISSN 1791-809X
Vol. 16 No. 1: 910

iMedPub Journals
www.imedpub.com

Research Article

DOI: 10.36648/1791-809X.16.1.910

On the Estimation of Cure Rate in the Presence of 
Prognostic Factors using Various Discrete Count 

Distributions

Abstract
Background:  Owing to the new treatments and medicines, many cancer patients get 
cured of the disease and they do not experience the event of interest (death). Such 
patients constitute the cure fraction. To analyze survival data related to diseases with 
cured fraction, cure rate models have been found to be more appropriate as compared 
to the standard survival models. Promotional Time Cure Rate Model is one such model 
and it assumes that the patient death may have been caused due to some latent 
competing causes.  In our case we have assumed that the number of competing causes 
follow either Binomial or Poisson or Negative Binomial Distribution. 

Material and Methods: Parameter estimation has been done by Bayesian approach, 
using Markov Chain Monte Carlo (MCMC) technique. A real dataset from a breast 
cancer data of 85 patients is used to illustrate the proposed methodology. The 
software’s Open BUGS and STATA is used for the analysis purpose.

Results: The DIC value of binomial distribution is 143.8 which is least among the three 
distributions which we have considered for analysis. Also, the predictors Age, tumor 
size and tumor Grade are found to be significant. The cure rate is found to be 11.58 
using the Binomial distribution as the distribution of the latent variable N. The overall 
cure rate is found to be 13.94 in the presence of predictors.

Conclusion: The findings revealed that Binomial – Exponential distribution with a 
cure fraction can be an interesting option to explain/predict the survival time and 
distribution of latent variables in Promotional Time Cure Model as compared to 
Negative Binomial and Poisson distribution in breast cancer patients.
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Introduction
In statistical literature, cure models have been continuing to 
play a pivotal role. Although under-utilized as a statistical tool, 
their importance can be understood in studying, characterizing, 
analyzing and describing survival of cancer patients when 
observed from a long term perspective. The standard survival 
models assume the same level of susceptibility to disease for all 
the subjects. They don’t take into account those subjects who will 
never experience the event of interest as they are cured of the 
disease. This calls in the need for special models in the case of 
diseases like Cancer, HIV where in there are long time survivors 
or cured patients. Due to the modern treatments and medicines 
there are some patients who are cured permanently and hence 
they have the same chance of a relapse or dying from the disease 
as the individuals who do not have the disease. Such patients are 
called cured or immunes. Their survival times are censored at the 

end of the follow- up time. Those patients who do not get cured 
are called susceptible. By plotting KM curve, we can find out if 
there is a proportion of patients who are long term survivors and 
can be put in the category of cured or immunes. A long plateau 
on the right reflects that there is a cured fraction in the data and 
cure models should be employed to model the life times of long 
time survivors.

For estimating cure fraction, we have two types of cure models 
viz. Mixture Cure Models introduced by Boag2 and Non Mixture 
Cure Models developed by Yakovlev.

In mixture cure model the survival function of the population is 
defined as:

S (t) = p + (1- p) S*(t)

where p is the fraction of cured patients and S*(t) denotes the 
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survival distribution of susceptible. Several authors like Borges, 
Berkson et.al. Cancho et. al. has explored different choices for 
S*(t). Non Mixture Models have been developed assuming that 
the cured patients are left with a number of diseased cells which 
may grow with time and can cause a relapse of the disease. Several 
parametric and non-parametric approaches have been employed 
in these models to meet the objective of estimating cure fraction. 
These models help in estimating the cured proportion in a clinical 
trial on one hand, while on the other, also offer an estimate on 
the probability of survival of the uncured patients over certain 
time window.

Although enjoying considerable popularity on account of its 
extensive usage, the mixture cure rate model has certain 
shortcomings based on different factors. Estimating the cure 
fraction is quite difficult in mixture cure rate model when time-to-
event of study is very large. Secondly, the assumption that cause 
is responsible for occurrence of event, is not always true, as the 
event of interest may happen due to different latent competing 
causes during the course of clinical trials. Thirdly, an important 
property of standard cure rate model is the presence of a 
proportional hazard structure in uncured patients and not in cure 
patients. Fourthly, the parameter p (fraction of cured patients), 
yielding improper posterior distributions for many types of non-
informative improper priors on inclusion of covariates through 
p. This is an important shortcoming of this model. Keeping these 
shortcomings into consideration, an alternative model named as 
the Promotion Time Cure Rate model has been found to be more 
relevant.

The promotion time cure model has couple of advantages over 
the standard cure rate model. It is based on the assumption that 
there could be various unobserved latent factors responsible 
for generating event of interest for each individual. From the 
perspective of understanding the presence of proportional 
hazard structure, it can be seen that in Promotion Time Cure 
Rate Model, there is a proportional hazard structure in presence 
of cure group unlike the standard cure rate model where this 
structure is present only in the presence of uncured group. 
Several authors have utilized this model to obtain the estimates 
of cure fraction employing different distributions like Generalized 
Poisson Lindely distribution [1,2], Generalized Power Series 
distribution [3], Negative Binomial [4], Poisson [5] and Geometric 
[6,7]. Ortega et al. [8] modeled the survival data with cure fraction 
using a Negative Binomial-Generalized Gamma distribution. 
A survival model with long time survivors and random effects 
using Promotional Time Cure Rate Model had been investigated 
by Lopes et al [9]. They considered both Classical and Bayesian 
approaches for parameter estimation. Gallardo et al [10-15] 
took forward their work by assuming random effects for both 
survival time of susceptible and cured proportion. They have 
also developed a Promotional Time Cure Rate model assuming 
Bivariate Normal distribution for both susceptible and cured 
proportion [16, 17]. Lambert et al. [18] considered the problem 
of cure rate estimation in the presence of covariates which affect 
both long term and short-term survival.

Grover et al. [19] have estimated cure fraction by using 
Promotional Time Cure Rate model under Negative Binomial-
exponential distribution approach. Varshney et al [20] estimated 

cure fraction among HIV/AIDS patients undergoing antiretroviral 
therapy (ART) using cure rate models.

As the number of competing causes (N) exhibits count data 
therefore, we have considered Binomial, Poisson and Negative 
Binomial distribution for N and have compared them by using 
DIC. The best fit distribution among them is the one with the 
minimum value of DIC. We have employed a Bayesian framework 
for parameter estimation and analysis under Markov chain 
Monte Carlo (MCMC) techniques in Open BUGS software. We 
have considered multivariate normal prior for the regression 
coefficients because conjugate priors exist for exponential 
distribution and normal distribution belongs to this family [21].

Methods
Promotion time cure rate model (PTCRM)
Let N be the number of carcinogenic cells (Latent Variables that 
remain actives after treatment) which can produce detectable 
cancer. Suppose that N follows Poisson distribution with mean 
alpha (α). Let Yi be the random variable for the time until the 
ith carcinogenic cell produces a detectable cancer. The variables 
Yi are assumed to be independent and identically distributed 
with a common distribution function F (t) =1-S (t) and are also 
independent of N. For cured subjects, 𝑁=0 and it is assumed 
that P (Y0=∞) = 1. For non-cured subjects, 𝑁>0, with Yi, i= 1, 
2… 𝑁, independent and identically distributed with common 
survival function S (t). The distribution function F is related to the 
susceptible and, in general, it is a proper function in the sense 
that 1)(lim =

∞→
tF

t

The time to relapse of cancer can be defined by the random 
variable T = min {Yi, 0 ≤ i ≤ N}. In other words, for non-cured 
individuals, the failure time is the minimum among the times 
the cells may take to, eventually, produce a detectable cancer 
whereas cured individuals will never experience the event of 
interest and the failure time in this case is infinity. Under such 
conditions, survival function for the random variable 𝑇, also 
called the population survival function, is given by

Spop (t) = P (no cancer by time t)

= P (N=0) +P (Y1 > t, …, YN > t, N ≥ 1)
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Where GN (.) is the Probability Generating Function (pgf) of N.

Let us assume that number of competing causes (N) follow 
Poisson distribution with parameters α 

Case 1: N ~ Poisson (α)

So, the probability mass function can be defined as:
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With E (N) = α      and      V (N) = α

The pgf of N is given by 
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and the survival function for the population becomes

)))(1(exp()( tStSPop −−= α , (using equation (2))                                                          (3)

Where S (t) = exp (-λt) is the survival function of exponential 
distribution.

 The cure fraction (i.e. the cure rate) in the population, from (3), 
is given by:

0)exp()0()()(lim >−===∞=
∞→

αNPStS PPopt
                                                              (4)

We can also see from (4) that the cure fraction i.e. the cure rate 
is given by Sp (∞) >0, which is not a proper survival function. As 
α ∞, the cure fraction tends to 0, whereas as α0, the cure 
fraction tends to 1. The pdf of population corresponding to 
Poisson distribution is:

))(exp()()( tFtftf pop αα −=                                                                                   (5)
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Here fpop (t) and hpop(t) are improper functions, as Spop(t) is not a 
proper survival function. 

In the similar way we can assume the distribution of N to follow 
Binomial and Negative binomial distribution with parameters (r, 
p) and (α, θ) i.e.

N~bin (r, p) and N~NB (α, θ) respectively.

Case 2: N~bin (r, p)

So the probability mass function can be defined as:
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The cure rate is
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Case 3: N~NB (α, θ)

Piegorschet.al.20 and Saha K et al [15] estimated cure rate 
estimation if N follows Negative Binomial Distribution. So, the 
probability mass function can be defined as:
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The likelihood function
Let Ni be the number of carcinogenic cells that can produce 
detectable tumor cells for the ith (i=1, 2… n) subject. Here Ni’s 
are independent Negative Binomial random variables with 
mean θi,, i=1, 2... n. Further assume that Yi1,Yi2,…,YiNi are the iid 
random variables representing the times for the development 
of  Ni carcinogenic cells in the ith subject, which are unobserved 
with common  cdf  F(.), i=1,2,…,n  and are observed to follow 
exponential distribution with mean λ.  Let ti denote the failure 
time and δi denote the censoring time for the ith individual, so 
that we observe

zi = min (ti , δi), 

 

otherwise
uncensoredifi

,0
,1=δ

The complete data can be represented by D= (n, z, δ, N). The 
corresponding likelihood function is then given by:

ii tftSDL Pop

n

i
Pop

δδλαθ )()()/,,( 1

1

×= −

=
∏

with )))(1(exp()( tStSPop −−= α ,     (as defined in eqn. (3) & (5))
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Where S(t) is the survival function of promotion time of N 
carcinogenic cells that can be from  any of the common survival 
distribution like Weibull, exponential, gamma. Here we have 
observed that the survival times follow exponential distribution 
with parameter λ and N follows Poisson distribution with 
parameter α.

Incorporation of covariates:  For the model (2), the covariates are 
incorporated through the cure rate parameter θ. In the presence 
of covariates, we have different cure rate parameter θi, for each 

patient, i =1, 2...n. Let ),...,,(' 21 iniii xxxx =
 be the 1×k  vector of 

covariates and ),...,,( 21 kββββ =   be the  1×k  vector of regression 

coefficients.  The covariates depend on cure rate θ through the 
direct relationship )'exp( βθ ii x= , which implies an increase in 
cure rate with increase in the covariate coefficient, so that the 
cure rate for patient i is given by:

 
αα βααθ
1

'
1
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−
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The parameters are estimated through Bayesian approach using 
the MCMC technique in Open BUGS software. The significant 
prognostic factors can be identified using Credible Interval which 
is the Bayesian analogue of a confidence interval [22,23].
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Model comparison criteria
In order to compare the models under Binomial, Poisson and 
Negative Binomial setup, we use the DIC (Deviance Information 
Criteria) proposed by which one of the best criterion for the 
comparison of Bayesian Models is.

 The DIC for any model can be defined as follows;

)ˆ(2ˆ DDDDIC −+=

Where D  is the deviance average (-2LogLikelihood) over the 
posterior distribution, and D̂  is the deviance calculated at the 
posterior mean parameters.

The model with the smallest value of DIC is known to be the best 
one.

Results
Analysis is done on 85 breast cancer patients diagnosed from Jan, 
2009 to Dec, 2010. About 82.4% of the cases (70 patients) were 
alive during follow up time. The median age of patients at the 
time of diagnosis is 49 years. A total of 6 predictors are used in 
analysis.

The descriptive characteristics of the data are shown in Table 1. 

To confirm the presence of cured patients in this breast cancer 
dataset we first plot the Kaplan Meier survival curve. 

Figure 1 displays a Kaplan -Meier plot for overall survival, which 
shows a "plateau" in the survival curve, and thus a cure rare 
model appears suitable for this data. 

The PP plot and QQ plot in Figure 2 justify the use of exponential 
distribution for the baseline survival function. 

Table 2, given below, shows the summary statistics of posterior 
estimates obtained from Poisson distribution, Negative binomial 
distribution and Binomial distribution. The DIC value (Table 
2) of Binomial distribution is smallest as compared to Poisson 
distribution and Negative binomial distribution. Hence we use 
Binomial distribution as latency distribution to estimate cure 
rate and to find the significant predictors. The cure rate using 
Binomial distribution is found to be [24].

Discussion
The purpose of this study is to estimate the cure rate of breast 
cancer patients under the approach of Promotional Time Cure 
Model using baseline survival distribution as exponential 
distribution.

The cure rate models are used to analyze lifetime data with 
cured fraction. Cured fraction is the proportion of patients 
who are assumed to be cured and would never experience, the 
event of interest. We can estimate the cure fraction using cure 
rate models. These models are based on the assumption that 

Predictors Frequency Mean Std. Dev. Min Max
Age 85 50.09 12.82 25 85
Tumor Size 85 3.72 1.62 1 8
Nodal Metastasis 85 4.36 4.70 0 15
Tumor Grade 85 1.96 0.71 1 3
NPI 85 4.81 1.34 2.12 7.6
CA-15 85 32.08 6.16 15.2 46

Table 1 Descriptive characteristics of breast cancer patients (N=85).

 
Figure 1 Kaplan-Meier survival curve indicates proportion of long-term 

survivors.
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Figure 2 Density graph of exponential distribution.

Parameters Poisson Model Negative Binomial  Model Binomial Model
Mean SD 95 % HPD Mean SD 95 % HPD Mean SD 95 % HPD

alpha 2.335 0.341 (1.712,3.067) 0.037 0.052 (0.006,0.169)

lambda 0.436 0.739 (0.305,0.601) 0.436 0.076 (0.305,0.591) 0.932 0.191 (0.616,1.318)
theta 2.337 0.345 (1.751,3.073)

p 0.854 0.020 (0.925,0.999)

N 1.124 0.226 (0.729,1.623)

DIC 176.8 178.7 143.8

Table 2 Posterior estimates obtained using Binomial, Poisson and Negative Binomial Distribution.

the event of interest (death) can happen because of a single 
cause, but in practice, it may happen due to different latent 
competing causes. The model with this assumption is known as 
Promotional time cure model. As number of carcinogenic cells 
(competing causes) exhibits count data, and for analyzing count 
data with over dispersion, it’s preferred to use discrete count 
distributions such as Binomial, Poisson and Negative Binomial 
(NB) distribution. In this article we propose this new family of 

Parameters mean S D val2.5pc val97.5pc
a0 0.1517 0.09798 0.06649 0.4168
Age -0.08643 0.05337 -0.2278 -0.03538
tumor size -0.03729 0.01319 -0.05851 -0.01543
tumor grade 0.02717 0.01234 0.0156 0.05842
NPI 0.02387 0.01751 -0.0152 0.04214
Nodal Metastasis 0.02141 0.02046 -0.02012 0.05259
CA15 0.01773 0.02971 -0.03375 0.06298
K 0.8977 0.5885 0.3716 2.514
Lambda 0.3545 0.2269 0.1521 0.9711
p 0.4856 0.2832 0.02945 0.8983

Table 3 Posterior estimates obtained using Binomial Distribution (in presence of Covariates).

cure rate models (Promotional Time Cure rate model) introduced 
by Yakovlev and Tsodikov [23]. This paper uses MCMC methods 
as a reasonable way to get Bayesian inference for analyzing 
survival data with immunes. On the basis of DIC, we found that 
Binomial distribution can better explain the latent distribution as 
compared to Negative binomial and Poisson distribution. On the 
basis of covariate analysis, we found that age, tumor grade and 
tumor size are significant prognostic factors.
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