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Abstract

Colon and Colorectal cancer are a diagnosis of particular
concern for older Canadians. They are the second cancer
in terms of rate of incidence and mortality among
Canadians after lung cancer. Treatment of colon and
colorectal cancer requires a complex decision-making
process of treatment. These treatments may involve
surgery and either pre- or post-operative radiation or
chemotherapy, which can have a great impact on the
quality of life of patients due to the rigorous requirements
of treatment and the inconvenient side effects. This paper
is the first developmental step of an agent-based
simulation platform aiming at simulating colon and
colorectal cancer patient care trajectories in a hospital. In
this study, we describe a virtual patient agent, which
includes a cancer evolution model, capable of replicating
cancer behavior in response to treatment. Simulation
results show promising interpolation results with respect
to chemotherapy dosage and radiotherapy dosage.
However, the model ability to interpolate different
administration protocols is still limited, and therefore
require calibration for each protocol.

Keywords: Agent-based simulation; Cancer evolution
model; Colon cancer; Colorectal cancer; Virtual patient

Introduction
Almost half Canadians (41% women and 46% men) will

develop cancer during their lifetime and 88% of them are older
than fifty [1]. Lung, breast, colon, colorectal and prostate
cancers represent more than half of all new cancer cases
(52%). Breast cancer is the leading type of cancer among
women, while colon and colorectal cancer are the third most
common cancer among men and women. Cancer is the leading
cause of death in Canada and in the world with 29.8% of the
population affected, compared to 26.6% for cardiovascular
diseases [2]. Furthermore, in 2000, cancer was the fourth most
expensive disease in Canada with $17.4 billion spent. Colon

and Colorectal cancer are considered the second leading cause
of cancer death among men and the third among women.

Cancer treatment is characterized by the convergence of
many services including ambulatory, hospitals, clinical,
nutritional, psychological, and sports medicine, which
coordination and integration condition treatment success and
patient quality of life. In order to reduce the impact of this
disease and increase the cure rate and the patient quality of
life, it is necessary to develop and evaluate new therapeutic
and organizational approaches. This study deals with this goal
and is the first methodological step toward creating a
simulation platform of care trajectories of colorectal cancer
patients. This simulation platform aims at simulating many
elements of the hospital environment, from care resources to
patient physiology and psychology profiles, in order to
evaluate the many impacts of organizational changes of care
trajectories.

First, this paper describes the general scope of this
simulation project and presents a state of the art of agent-
based simulation. Next, the general conceptual model of the
simulation is described. Then, we present our cancer
evolution, which is then tested and validated using two
separate experiments.

Research Objective and General
Methodology

This section introduces the general objectives and limits of
this study and presents the general methodology used to
achieve the objectives.

Project general and specific objectives
Providing high-quality care is a priority among health

professionals. However, resources are limited and their
utilization must be optimized in order to meet high quality
standard and patients unique profile. Therefore, the challenge
faced by care providers and managers is to design
organizational and medical processes that will deliver the right
treatment, to the right patient, at the right time using the right
resources. This study is part of a comprehensive project, which
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aims at developing a computer simulation environment of
patient care trajectories in order to evaluate new approaches
to increase hospital productivity and adapt hospital clinical
practice conditions for the elderly and patients with multiple
chronic diseases.

Ultimately, the simulation model will include:

1. The physical health of the patient;

2. The cognitive state of the patient;

3. The psychosocial state of the patients;

4. The hospital resources, staff and physicians.

In other words, factors such as socio-demographic and
environmental characteristics, as well as the characteristics of
the organizational and decision-making systems, will be used
to simulate patient care trajectories, from their diagnosis to
the end of the treatment. The expected result of this project is
an innovative modeling of the interactions between the
patients and the health care system, and ultimately, the
development and validation of a new approach of providing
cares. This simulation environment will support the
simultaneous optimization of resources utilization and care
quality by assessing the performance of multiple patient care
trajectories in a virtual hospital based on reengineered
organizational and medical procedure of the Montreal General
Jewish Hospital. This paper focuses specifically on the first
developmental step of this simulation model, which concerns
the development of an agent-based model of colon and
colorectal cancer patients. This includes a general conceptual
model and a cancer evolution model under different kinds of
treatment. The next section introduces agent-based
simulation.

Agent-based modeling paradigm
The general objective presented in the previous section

requires the modeling and simulation of complex behaviours,
decision-making processes and interactions between hospital
staff and patients. The most appropriate technology to
simulate these complex mechanisms is agent-based modeling
and simulation. In this study, agent-based simulation is used as
the main modeling paradigm, because it allows the researcher
to model the actors (e.g., patient, physician, nurse, and
support staff) involved in the care trajectory and their
interactions in a natural and anthropomorphic manner.

In brief, agent-based simulation is used in many scientific
domains such as ecology, biology, economics, social science,
physics, engineering, and medicine [3-5]. It is used to study
complex systems by simulating the individual behaviours and
the interactions of their elements. In order to create an agent-
based simulation model, the researcher must identify the
agent candidates, determine which one should be
implemented as agents, and define their behaviour and how
they interact with each other.

In this project, not all healthcare providers and hospital staff
involved in care trajectories will be modeled as agents. For
simplification purpose, an agent can also be used to model a

function, instead of the individual people responsible for that
function. For instance, a tumor board can be model as an
agent. This paper focuses on the design of the patient agent.

Research methodology
As mentioned earlier, this paper presents the first step of

this comprehensive project. The objective is therefore to
create and validate the patient agent model, which includes a
physiological model of how the cancer evolves in time in
response to specific treatments. Although the general
objectives of the project is to simulate a large number of
patients treated simultaneously with the same resources of
the hospital, this step of the project is only concerned with the
general behaviour of the patient agent, and how well it can be
configured in order to simulate colon and colorectal cancer
patients with different attributes.

In order to achieve this specific objective, several challenges
must be addressed. The first methodological challenge
concerns the development of the cancer evolution model.
Cancer evolution in time and particularly during treatment is
an important part of this study. It is the central model of
proposed the simulation environment, because (a) it has an
impact on resource utilization and decision processes, and (b)
it is impacted by all medical and organizational decisions and
resource availability, as well as the patient condition,
environment and support.

Therefore, having a representative cancer model is essential
to this project. However, its domain of application goes
beyond the evaluation of new organizational processes. For
instance, an accurate model of cancer evolution can be used to
replace clinical tests using simulation [6]. It can also be used to
estimate recurrence rate after specific treatments, or for
training purpose and decision support.

Although such simulation models can be useful in many
contexts, and despite the fact that there are numerous models
for specific aspects of cancer evolution (with and without
treatment), to our knowledge, there is no integrated model to
simulate cancer evolution from its beginning to remission or
death.

In order to define such a general cancer evolution model,
we divide the problem into different parts, describing the
evolution over time without treatment, and with each
category of treatment. For each part, we first identified
theoretical or empirical studies in the literature. Next, we
adjusted partial models and integrated them into a general
cancer evolution model.

Because our ultimate goal is to simulate the simultaneous
treatment of many patients in a virtual hospital, each part of
the model had to be solved reasonably quickly. Therefore, our
main concern is the integration of these models by considering
their validity domain.

At this stage of the project, our model does not take into
account all available cancer treatments. Although there are
currently only three main categories of treatments used in the
world, surgery, chemotherapy and radiation therapy, each
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category treatment has a large number of different options
that do not impact the patient and the cancer in the same way.
In addition, these treatments can be administered alone or in
combination, which then creates interactions that must be
specifically studied. Consequently, the model presented in this
article considers only few treatments, which are applied
separately.

The second methodological challenge that must be
addressed in this study concerns the validation of the cancer
evolution model. This is done by testing the model in different
configurations of treatment.

The next section presents a state-of-the-art of simulation
application to the medical domain.

State of art
Simulation is a proven methodological tool to study the

intrinsic complexity of dynamic systems, which behaviour
emerges from the interactions of a multitude of elements.
Artificial (e.g., emergency, health services), biological (e.g.,
immune system, tumor growth) as well as psychosocial (e.g.,
patient, family, physician) systems involved in healthcare-
related issues are complex in nature. Most simulation technics
have been used to study and analyze these systems, including
Monte Carlo simulation, Discrete-Event Simulation, System
Dynamics and Agent-Based Simulation. In general, computer
simulations are used to better understand the impacts of
specific decisions, policies, or systems configurations through
the use of virtual computer emulation of real systems.
Computer simulations can also be used in educational settings
in order to develop specific skills, in which students control
part of the computer variables through user interfaces. This
section presents different simulation applications in the
medical domain as a tool to improve care quality and services.
Next, we introduce a detailed analysis of agent-based
simulation applications in the medical domain, with an
emphasis on the agents’ functions.

Simulation technics and applications in the
medical domain

As briefly mentioned earlier, several simulation technics
have being used in the medical domain. Each technic has its
pros and cons and are appropriate for specific contexts. First,
Monte Carlo simulation uses, repeatedly, random sets of
numbers from known probability distribution of different
sources of uncertainty (i.e., the environment), in order to
compute the results of a mathematical model or algorithm
(i.e., the system's model), from which we can infer the general
behaviour or performance of that system. It is used in practice
when the behaviour of the system cannot be easily calculated
analytically. Discrete-Event Simulation aims at creating
simulation models in the form of queuing-type systems, in
which time moves forward either by equal time increments or
from one event to the next. In such models, events and flows
between components occur according to probability
distributions, which define processing and transit times, and
priority rules. Next, System Dynamics aims at modeling

complex systems in order to analyze their general behavior.
System Dynamics uses a top-down modeling approach based
on stocks, flows, feedback loops and time delays. Such models
only simulate the high-level interactions between the general
components of a system by simulating the ripple effect of
changes associated with their mutual dependencies. System
Dynamics does not model the elementary interactions
between the individual elements of the system, which is what
Agent-Based Simulation aims to model and simulate.

Agent-Based Simulation is an emerging simulation tool,
which takes a bottom-up approach to model the individual
behaviors and interactions of a system's elements, referred to
as agents. Hence, instead of modeling the relationships
between the components of a system, Agent-Based Simulation
captures how the individual elements of a system behave with
respect to their own local environment and state, and how
they interact, communicate, make collective decisions, or
influence each other. The Agent-Based Simulation modeling
paradigm generally uses theoretical or empirical models to
capture individual behaviors.

In the medical domain, 200 papers were identified, in which
simulation is used [7]. More than 70% of these applications
used Monte Carlo simulation, while 20% used Discrete-Event
Simulation, less than 9% used System Dynamics, and finally
only 1% used Agent-Based Simulation. Furthermore, the aims
and scopes of these studies are extremely varied which
presents an extensive review of these applications [8]. The
authors classified these applications into two categories: the
management of patient flow and the allocation of resources.
More recently, additional categories were added to the
previous classification, including infection studies,
communicable diseases, costs, economic evaluation and
screening [9]. The same line, mentions the following domains
of healthcare simulation: hospital systems, hospital
departments, ambulatory care, health care systems planning,
health care models, and medical decision making [10].
Similarly, such models are used to study different types of
issues including health risk, cost effectiveness of patient care
strategies, transmission of diseases, health service
organization and public health policy evaluation [7].

For instance, use ABS to reorganize hospital emergency
departments. Recently, several simulation techniques have
been used in conjunction to capture different dimensions [11].
For instance, use both DES and ABS to model a healthcare
system, in which patients choose their hospital based on a
linear additive service function of three factors (i.e., hospital
reputation, travel distance, waiting time) [12]. Finally, propose
one of the first systematic studies aiming at comparing SD and
ABS based on a simple mathematical model of interactions
between a tumor and immune cells [13]. The authors
concluded that both modeling paradigms are not always
equivalent. The next sub-sections first introduce the general
concept of agent. Then, a state-of-the-art in agent-based
simulation in the medical domain is presented.
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Agent-based simulation in the medical domain
Research in agent-based simulation is prolific. It is known

under different labels, including multi-agent simulation,
individual-based models and agent-based models. These
simulation tools are part of a more generic technology known
as multi-agent systems, which domain of applications is much
larger than simulation. In the literature, the concept of agent is
generally defined as a computer system situated in an
environment, which is a way autonomous and flexible to
achieve the objectives for which it was designed [14].
Therefore, computer agents usually possess the following
properties [15]:

1. Autonomous: Agents can act without the direct
intervention of a third party (human or other) and they
are not subject to any control on their action or their
internal state;

2. Reactive: Agents can perceive their environment and
cope with changes in their environment in a conducive
manner;

3. Pro-active: Agents can demonstrate internal goals, taking
initiatives behaviours;

4. Social: Agents can interact with each other through some
form of communication languages and shared rules of
sociability.

To these properties, agents may exhibit other properties to
meet specific requirements [16-19]. Based on these concepts,
agent-based simulation is growing rapidly in the medical
domain. Several authors report the benefits and suitability of
this simulation technics for the medical domain. The reasons
lie in the complexity and dynamics of healthcare systems.

Healthcare operations management is a domain that is well
suited to agent-based simulation because it involves many
interacting people with their own decision-processes. With
agent-based modeling, it is possible to explicitly model these
individuals and their interactions. However, although agent-
based simulation is growing in the medical domain,
applications to the real world are still rare [20,21].

In most organizational simulations in the medical field,
agents, whether patients, doctors or nurses are of reactive
type and their behavior are very specific to the purpose of the
simulation. For instance, use simulation in order to analyze the
performance of an emergency department in different
configurations. In these studies, agents are used to model
resources that move through the hospital with predefined
process time [22-25]. Modeling in these studies deals mainly
with the different types of treatment associated with their
time and resources requirements, which then become
predefined in the simulation. Only patients arrival time and
resources availabilities change dynamically [26]. In these
models, the agents travelling times within the hospital is
predefined. However, it can also be dynamically computed in
the simulation as in which models the evacuation of an
hospital undergoing a fire, or in that use simulation to study
different transport configurations for clean and dirty
equipment in the hospital [27,28].

The patient agent has a more advanced behavior because it
can chose the hospital for treatment according to various
criteria such as quality of care and waiting times. Although, its
choice is the result of a simple algorithm, this represents an
agent which behavior aims at maximizing a preference
according to the state of its environment [12].

The authors go further and model the interaction between
the type II diabetic patient and the doctor in order to study the
impact of such negotiations on the effectiveness and cost of
treatment [29]. Day TE, et al. [30], explained about the model
extensively a diabetic patient, taking into account the
evolution of his illness according to choice of treatment. This is
the aim of this paper, with a focus on colon and colorectal
cancer patient.

In the next section, we present our general conceptual
model in order to guide the development the simulation
platform.

Patient agent models
The patient is the central actor of the healthcare system or

real system. It interacts with many resources, including
physicians, nurses and equipment. Its dynamic condition is the
main driver of resource utilization, and its reaction to
treatment defines the system quality level. In order to design
such an agent, different models are proposed to describe its
place in the overall system, and its complex behavior.

Conceptual model
The general conceptual model proposed in this study

defines the main interactions between the patient and its
environment (Figure 1). It is composed of four dimensions and
includes different aspects of the patient, its environment, and
the healthcare system. These dimensions are related to
physiology of the patient, the psychosocial state and support
of the patient, the decision processes and the resources use to
treat the patient. The links between the different aspects
identified within these four dimensions represent their mutual
dependencies. The central (colored) part represents the
patient agent. The other parts represent the hospital staff
involved in the treatment selection, as well as patient support
(e.g., family members, nurses).

Psychosocial dimension: The psychological dimension
includes an emotional model of the patient agent and its social
influences, especially in the form of support from family
members and nurses. This model describes a response to
specific situations. This model will eventually contribute to
measuring the patient quality of life during treatment.

Physiological dimension: This dimension includes both the
patient’s health model (its general physical and health
condition) and its cancer evolution model. Both are affected
by treatment in different manners, while influencing each
other. In practice, this dimension includes on the one hand,
the absolute physiological state of the patient and cancer, and,
on the other hand, the perception of this state obtained from
observations (e.g., analysis, scans and biopsies). While the first
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information is not necessarily known, the second can be out-
dated, and more or less accurate. The variable describing the
cancer evolution model in particular is described in the next
section. Finally, in this model, the patient health model is
influenced by his or her emotional model.

Figure 1 General conceptual model.

Decision dimension: This dimension includes both the
patient’s and the physician’s decision models. It represents the
main actors’ decision-making processes and preferences that
contribute to treatment selection and treatment
implementation. It is the part of the conceptual model that
directly contributes to the decision and implementation of
patient care trajectories. Here, the patient decision model is
influenced by its health and emotional models, while the
physician decision model is influenced by the patient cancer
and health models. The patient decision model also
contributes to plan each individual treatment according to the
system resource availabilities.

System dimension: The system dimension represents the
virtual hospital resources and processes. When a physician
requests a type of treatment, it must be plan according to the
hospital priority, the workload of the resources required for
this kind of treatment, as well as the preferences of the
patient.

The different sub-models of these dimensions influence
each other in order to emulate the general relationships
between the patient, his/her cancer, the medical staff, and the
patient's support. The relationship between the patient and
the hospital processes and resources are addressed through
the dynamic specification of the treatment program into the
care trajectories, which defines how the patient interacts with
the different resources for his/her treatment and tests/scans.
The next section focuses on the cancer evolution model and
the link between cancer evolution and the physician decision
model.

Cancer evolution model
Modeling the evolution of cancer is an important step for

the simulation of care trajectories. In order to do this, the
cancer will be modeled into two parts, the main tumor and
metastases. Metastases are meant as a general term referring
to every cancerous cell found in the patient’s body that is not
part of the main tumor. This may be an isolated cell traveling in
the patient's body or a small tumor hooked somewhere else
than the main tumor. The main tumor size and the number of
metastases are two important information as they influence
the decision about the treatment [31]. Both will be simulated
from their appearance (size 1 cell for the tumor and no
metastasis) to the end of the treatment. It is useful to model
the evolution of the cancer before the diagnosis so that out of
treatment evolution parameters can be validated and the
distribution of metastasis density can be known.

The evolution of the tumor model that will be described
later has four parts: a free evolution and the three evolutions
under each of the three treatments, which are radiation
therapy, surgery and chemotherapy developments.

For the metastases evolution model, there are only two
parts: as for the tumor model, a free evolution and an
evolution under chemotherapy. There is no special evolution
under radiation therapy because it has no effect on metastasis
other than to reduce the emission of cancerous cells by the
main tumor. If we neglect this impact, it is considered that
they evolve in the same way as free evolution. Thus the only
treatment affecting metastases is chemotherapy.

Tumor free growth
There is a lot of mathematical models of tumor growth

based essentially on population-based models [32]. The
original population-based model was developed by Maltus at
the end of the 18e century, using equation (1):

Where Xp(t) is the tumor size over time given in numbers of
cells. One of the most common formulas used for g(x) is an
empirical law (see equation 2) described by Gompertz in 1825
[32], which describes the evolution of the main tumor from
the appearance of the first cancerous cell to a larger tumor.g � = � * � * ln ��                  (2)

With a being the rate of tumor growth (it is related to
doubling time (DT) of the tumor); b is a constant equals 1012

and represents a maximum diameter of 12.4 cm (this value is
used in most studies on solid tumors). Other tumor growth
models exist, such as logistic and exponential models. The
Gyllenberg-Webb model divides the evolution of the tumour in
different phases depending on its size in order to describe its
evolution more precisely [33].

In the simulation, the Gompertzian formula for the tumor
free evolution was used. In order to determine a, we used
which characterizes the tumor growth of 27 patients suffering
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from colorectal cancer [34]. Using this empirical study, we
computed a Weibull distribution law of the doubling time,
from which we randomly generated a doubling time DT.
Assuming that this doubling time is a constant over the tumor
growth, this allows us to calculate the time it takes for the
tumor to be a given percentage P of the maximum size b using
equation [3].

����������(�) = � ��(2)�� * �      (3)
Once the T is known, a is calculated using the Gompertz

curve function, as shown in Figure 2.

Figure 2 Estimation of parameters a (Red=Gompertz curve;
Blue=Exponential curve).

Therefore, the link between the doubling time and a can be
calculated using equation (4).

� = − ln − �� ��� � * �� 2���� � * �                                             (4)
Tumor growth after radiation therapy: First, only external

radiation therapy is modeled. Its impact on the size of the
tumor is calculated one session at a time. Consequently, the
remaining number of cells is the number of cells before
treatment multiplied by the percentage of surviving cells S
represented by equation (5) from [35].

� = �−� � *�+ � *�2 + �                           (5)
With α and β being constants for colon and colorectal

cancer, respectively 0.339 and 0.067, as empirically estimated
by Suwinski R, et al. [36]; d is the dose used during the session;
and A and B are two parameters associated with the patient,
corresponding to the effect of a variety of factors. They follow
a normal distribution determined using [36]. This model is
based on two assumptions. First, each cell that cannot further
divide itself after the radiation therapy session is considered
dead. Second, the tumor keeps growing freely between
sessions.

Tumor growth during chemotherapy: The action of
chemotherapy is determined using a model developed and
tested with two types of chemotherapy drug (i.e., Fluorouracil
and Capecitabine) on colon and colorectal cancer [37]. Based

on this study, the function g(x) in equation (1) is described by
equations (6) and (7):� � =   ��− � � * �                   (6)� � = �0 *��������������� �,   ��                                 (7)

With ac being the exponential growth factor of the tumor. It
is determined according to the parameters of the Gompertzien
growth and the tumor size at the beginning of chemotherapy.
Concentration (t,Ti) represents the function of drug
concentration injected at time T during session i, in the
patient’s body over time. E0 is the effect of the drug on the
decrease of the tumour [32]. E0 depends on the patient and
on the type of treatment. We model three types of drug
administration: Oral, injection with syringe and long injection
like Portacaths [38] and Piccline [39]. The function of
concentration of drug in the patient’s body over time is
different for these three types of administration (see
equations 8, 9 and 10) [32,37].

For injection with syringe and oral administration:�������������(�,��) = ���� * (12 + 12 * ���ℎ(�(� − ��)))* �((���������� * (�� − �)))                       (8)
With Absorption being the speed of drug elimination from

the patient’s body; k is the speed of drug assimilation; and
Dose is the dose injected during the session. The only different
between injection with syringe and oral administration is k,
which is bigger for injection (Figure 3).

Figure 3 Drug concentration (Dotted line is oral, plain line is
injection).

For long injection: Concerning long injection, the only new
parameter is duration, which is the length of time of the
injection, as shown in equation (9), and Figure 4. )))                       (9)
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Figure 4 Drug concentration (long injection).

Finally, the function of the tumor’s size during
chemotherapy is:

With STc is the tumor’s size before the beginning of
chemotherapy. This value is also used in the metastatic
evolution model.

Tumor growth after surgery: The effect of surgery on the
size of the tumor is simpler than the other two treatments
described above. Indeed, depending on the cancer (colon or
rectum) and the type of surgery, the effect of the surgery can
be described as a probability of having cancerous cells from
the main tumor remaining in the body. The next section
presents an illustrative example of a cancer patient treated
with two treatments.

Illustrative example: In order to illustrate the evolution of a
main tumor, before, during and after treatment, this example,
shown in Figure 5, shows the tumor’s diameter in mm over
time. First, there is a three-year evolution phase before any
treatment. Then, there are three weeks with 5 radiation
therapy sessions per week, followed by one week of rest, and
finally six months of chemotherapy.

Metastases growth
For the development of metastases, we use a model

developed by Iwata [40]. In this model, the growth of main
tumor and the metastases are described by a set of
mathematical equations. The tumor growth is modeled by
Xp(t), which can either be the Gompertzian function (2) or the
exponential function (3). Next metastases growth, produced
by the main tumor and other metastases, is described by
equation (11).� � =   � * ��2                    (11)

With m being the coefficient of colonization, and α2 being
the fractal dimension of blood vessels infiltrating the tumor. In

turn, as shown in Figure 6, new tumors grow according to Xp(t)
and produce cancerous cells according to β(x).

Figure 5 Tumor’s diameter in mm over time.

Figure 6 Metastases growth dynamic.

Considering that all tumours evolve similarly is not entirely
correct. Indeed, although they all originate from the main
tumour (i.e., their nature is similar), their spread and evolution
depend on their location. However, accurately modeled
movement of each tumour cell in the body is impossible. The
Iwata model and its assumptions are considered valid and
used in the majority of evolution models of metastases.
Iwata’s model is defined by the system of equation (12):∂� �, �∂� + ∂� � *� �, �∂� = 0,� �, 0 = 0,g 1 *� 1, � =∫1∞� � *� �, � ��+   � �� � .

               (12)
With ρ(x,t) being the density of metastases in the patient's

body (i.e., the number of tumours containing x cells at time t),
and g(x) being the function. Both parameters m and α2 are
specific to each patient and have a normal distribution, which
are determined [31,40].

The value of interest for the decision-making is the
Metastatic Index (MIn). It is defined by equation (13) [31]. It
represents the total number of metastatic tumors of size
between n and Xp(t) in the patient's body at time T.

��� � ∫� ��(�)�(�,�)��         (13)
The resolution of the Iwata model is more complex than

that of the primary tumor. Furthermore, there is general
solution of this model with a function g(x) with chemotherapy.
Therefore, in order to keep calculation time reasonable within
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the simulation environment, the Iwata model is only used to
describe the evolution of metastases without treatment using
function g(x) defined in equation (2).

Metastases growth during chemotherapy: Granted there is
no general solution to the Iwata model with chemotherapy, in
order to determine the effects of chemotherapy on
metastases, we first made three assumptions:

1. Cancer cell dispersion in the body (i.e., β(x)) is neglected.
Because cancer cell progressing through the patient's
body is directly in contact with the drug, we assume it is
automatically destroyed.

2. All metastatic tumors evolve along the same decay law as
the primary tumour under chemotherapy. In this study,
we use equation (6).

3. The number of tumors given by ρ(x,Tc), as defined in
equation (12) at the end of the free evolution of
metastases, remains unchanged during the chemotherapy
treatment. Only the tumor’s size is affected.

Based on these hypothesis, the new distribution of
metastases during chemotherapy (t>Tc) can be calculated
based on ρ(x,Tc) as defined at the end of the free evolution of
metastases, using equation (14):

Model integration
Each of these individual models describes part of the entire

cancer evolution with and without treatment. For the purpose
of building a simulation model, they must be integrated.
However, they are continuity gaps at the interface of each
model that require some adjustments. More specifically,
because the Iwata model is difficult to solve when initial
conditions are changed (e.g., after a chemotherapy session),
we made hypothesis in order to simplify the integration of the
different models.

First, between surgery and chemotherapy, the primary
tumor does not produce metastases because it has been
removed. However, an opposite effect occurs after the
removal of the main tumor favoring metastases development
through angiogenesis [41]. Therefore, because we do not
know which effect is dominant, the metastases growth model
proposed and it is used after surgery.

Similarly, concerning radiation therapy, the decreased
metastases production by the main tumor is neglected.
Indeed, at this stage of the cancer, the production of
metastasis is partly due to metastases themselves [42].
Furthermore, for staging, as seen in the next section, we only
consider metastatic tumors of size greater than 5X106 cells.
Consequently, this effect has little impact on metastases of this
size, because metastatic cells produced during radiation
therapy do not have enough time to growth bigger than this
size before chemotherapy.

Next, between consecutive chemotherapy sessions, or
during chemotherapy breaks due to fatigue of the patient, we
assume that the E(t), which defines the impact of
chemotherapy drug in the tumor growth model during
chemotherapy (i.e., equation (7)), is equal to zero until the
next session due to a lack of drug in the body. Therefore, we
model the tumor growth between sessions as exponential (i.e.,
equation (3)), because it is sufficiently accurate for short
period of time (the difference between the gompterz and
exponential growth over three weeks is less than 0.5% in most
cases). However, note that the gompterz growth was used for
the evolution of the tumor over the large period before any
treatment. In order to calculate the parameter ac (from
equation (6)), we used the technic.

Another challenge, for the integration these models, lies in
the calculation of the metastatic index (MI). Indeed, the upper
limit of the integral (equation (15)) is the tumor size during
free evolution. However, during a treatment, the upper limit is
no longer equal to the size of the tumor. For example, during
radiation treatment, the tumor size decreases a lot, although
the treatment has no direct impact on metastases. Therefore,
the tumor size after radiotherapy cannot be taken as the upper
limit of the integral. To solve this problem, we take as an upper
bound the fictitious tumor size corresponding to its free
evolution. For chemotherapy treatment, the upper bound is
also the size of the fictitious tumor, which evolution is
described by the evolution of the tumor with the
chemotherapy model.

Cancer observed state and actual state
The physician’s decision on which treatment to be

performed on the patient is not based on the output values of
the mathematical models presented above, which represent a
simulation of the actual state of the cancer that can never be
completely known. Instead, treatment decisions, which will
eventually be simulated as well, are based on criteria such as
TNM staging of cancer [43]. TNM staging can be considered as
the observed state of the cancer. Consequently, we must link
both the observed state and the actual state in order to be
able to define what treatment to perform for each patient. In
the simulation environment, TNM staging is only determined
before deciding which treatment to follow during treatment,
physicians are more interested by the reactions of the cancer
and the general health of the patient in order to interrupt or
adjust the treatment. The NCCN Guideline explains the TNM
staging for colorectal cancer in details. However, for
simplification purpose, this staging was adjusted, as described
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We define a new function Xpc
-1 as.

Therefore, MI during chemotherapy can be calculated using
equation (16):

��� � =∫� ��� �� �� , � � ���−1 �, � ,�� ��                 (16)

� �1, � = � �2,��     ���ℎ     �1 = ��� �2, �            (14)
� �1, � = � �2,��     ���ℎ   �1 = ��� �2, �           (15)



[44]. Here, T only corresponds to the general stages of cancer
(i.e., 1, 2, 3 or 4), while N and M are Boolean variables
specifying respectively if there are or not metastases lymph
node (i.e., N), and if there are or not distant metastasis (i.e.,
M). This simplified staging identifies the most important
aspect to know for treatment decision, using the NCCN
guideline.

Tumor: The output of the tumor model is its size given in
numbers of cells. In order to convert the number of cells into
the diameter of the tumor, we assume that 1 mm3=106 cells,
as explained and that the tumor is a sphere [43,44]. With
these assumptions, the conversion can be done using equation
(17).

��� = 6 *��  � * 106 1 3                 (17)
Where Nc is the number of cells in the tumor.

In the TNM classification, T corresponds to the penetration
of the tumor through the various tissue layers of the colon and
not directly to the tumor size [45]. However, it is possible to
estimate the tumor penetration distributions according to its
tumor size, as shown in Figure 7 [46,47].

Therefore, from the size of the tumor given by the
mathematical model, a probability of belonging to a particular
penetration (i.e., T1 to T4) is determined. For example, a
tumor with a 4-centimetre diameter has a 45% chance of
being a type T3 penetration, and a 55% chance of being a type
T2 penetration.

Nodes and metastases: In order to determine M, the same
method was applied. If IM10

8 is greater than 1 at the time of
diagnosis, we consider that the patient has metastases in at
least one organ and his M is equal to one [31]. Concerning N,
we proceed similarly. However but we use IM5X10

6 instead of
IM10

8 because a size of 5X106 cells corresponds to 2.1 mm,
which is the difference between the average size of the tumor-
free lymph nodes and the average size of lymph nodes with
metastatic infiltration, measured [48]. Furthermore, below this
size, there is very little chance that the analysis of nodules
comes out positive for the presence of cancerous cells [31].

Clinical pathways module
In this section we performed a critical analysis on the

existing pathways provided by NCCN guidelines version 2015
(www.nccn.org) and Cancer Care Ontario
(www.cancercare.on.ca) treatment pathways and further we
consulted with the medical staff at JGH to develop a platform
for the clinical pathways associated with the type of cancer
(colon or rectal) and the different stage of cancer to be
incorporated into the simulation. In addition, we also reviewed
a demo database acquired from JGH on colorectal cancer
patients entering the system in 2013, to analyze and identify
the dissimilarities for the year of 2013.

Figure 7 Distribution of T1 to T4 according to tumour size.

Colon cancer pathways: The treatment of colon cancer
depends on the stage, location of the tumor and the overall
health of the patient. Surgery and chemotherapy are two
currents treatments of colon cancer. After reviewing the
pathology reports (imaging, polypectomy or biopsy) and
staging the cancer, surgeon decides whether the patient is a
candidate for resection surgery or medically unfit for surgery. If
operable, the patient is scheduled for colectomy with Enbloc
Removal of Regional Lymph nodes; if not operable the patient
is instructed for palliative chemotherapy or radiation therapy
after consulting with medical oncologist. Post-operation
recovery period for patients with colon cancer is usually 4-8
weeks.

Patients in Stage II are categorized as either low-risk or high-
risk. Low risk stage II patients proceed to the cancer follow-up
care pathway, however the high risk stage II patients with
completely resected colon cancer are referred to medical
oncologist and are considered for sessions of adjuvant
chemotherapy and then proceed to cancer follow-up care
pathway. Recommended chemotherapy protocols by Cancer
Ontario and NCCN to the use of chemotherapy in Stage II high
risk patient’s remains controversial (Figure 8).

All stage III patients with completely resected colon cancer
are referred to medical oncologist for adjuvant chemotherapy.
If surgery unsuccessful the surgeon might consider re-
resection. With or without resection the patients are referred
to medical oncologist to be considered for chemotherapy.

Patients in Stage IV are first considered for colon resection if
and only if there is an imminent risk of destruction or
significant bleeding. In case the liver and/or lung metastases
exist and are resectable, the patient is either directly
considered for staged resection of metastatic and colon cancer
or is firstly referred to medical oncologist for neoadjuvant
chemotherapy and then is scheduled for surgery. After the
surgery the patient is considered for adjuvant chemotherapy.

If the liver and/or lung metastases are potentially
resectable, firstly the patient proceeds to chemotherapy. After
the chemotherapy treatment, the patient is re-evaluated for
resctablility, if resectable, the patient is scheduled for staged
resection of metastatic and colon cancer.
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Various pathways were observed in this stage. Pathways
such as Radiotherapy and chemotherapy protocols, before and
after resection and in some cases combinations of
radiotherapy and chemotherapy protocols were also observed.

Colorectal cancer pathways: After reviewing the pathology
report (polypectomy or biopsy) and staging the cancer, the
surgeon decides whether the patient is a candidate for
resection surgery or medically unfit for surgery. After surgery
the patient is referred to Pathology for further screening tests.
If not operable the patient is instructed for palliative
chemotherapy or radiation therapy after consulting with a
medical oncologist. Post operation recovery period for patients
with colorectal cancer is usually 6-8 weeks. After searching the
medical databases and consulting with surgeons at JGH we
realized that even though the treatment recommended by
NCCN and Cancer Ontario is resection in the case of stage I
cancer, many believe radiotherapy alone is successful in
removing the cancerous cells (Figure 9).

For the stage II and III, the surgeon needs to decide whether
the cancer is resectable or not. If resectable, the patient is
referred to a radiation oncologist and a medical oncologist for
preoperative therapy which includes preoperative chemo-
radiotherapy or preoperative hypo fractionated radiotherapy
alone. After preoperative therapy the patient is scheduled for
resection surgery the patient is then referred to pathology for
further tests and thereafter to adjuvant chemotherapy if
necessary. However, if the cancer is not resectable, the
possibility for down-staging the cancer with chemo-
radiotherapy is assessed. If possible, the patient is referred for
chemo-radiotherapy while being re-evaluated for resectability
by allowing adequate time for down-staging. If down-staged
the patient is then scheduled for surgery, however if down-
staging is not successful, the patient is instructed palliative
chemotherapy. If there is no possibility for down-staging the
cancer with chemo-radiotherapy the patient is instructed for
palliative radiation with or without chemotherapy.

For patients in stage IV of rectal cancer, the respectability of
the primary tumor and of metastatic disease is first evaluated.
Subsequently, a multidisciplinary team of surgeons, radiation
oncologists and medical oncologists create an individualized
care plan for the patient. If the primary tumor is resectable
and the metastatic disease is resectable or potentially
resectable, a neoadjuvant chemo-radiotherapy plan is formed
for the patient. After the therapy, the patient is scheduled for
the resection of the primary tumor. Afterwards neoadjuvant
therapy is prescribed. After the chemotherapy metastatic
lesions are assessed and if possible the patient is scheduled for
resection of metastatic liver lesion. If the metastatic disease is
not resectable the patient is instructed for appropriate
palliative therapy. However if primary tumor is not resectable,
neoadjuvant chemotherapy is considered for down-staging
and converting the tumor to a resectable one. If down-staging
is successful the patient follows the aforementioned pathway,
However if down-staging is not successful the patient is
instructed for appropriate palliative therapy.

Figure 8 Stage 1, 2, 3, 4 colon cancer treatment plan.

Figure 9 Stage 1, 2, 3, 4 colorectal cancer treatment plan.

Model Validation
In order to validate the model, we carried out two

experiments, using our simulation platform (based in the JADE
Platform) with a 3,5 GHz Intel Core i7 processor and 32 Go of
RAM. The first experiment aims at assessing the ability of the
model to replicate the results of different clinical studies with
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specific treatment protocols. The second experiment extends
the first by assessing the ability of the model to interpolate the
results of several clinical studies with different treatments (i.e.,
different dosage, different protocols, and different treatment
duration). In other words, this second experiment aims at
analyzing the ability of the model to estimate the outcome of
treatments for which we do not have clinical studies.

In both experiments, in order to compare the simulation
results with actual data, we used the standard classification
criteria of the World Health Organization which are also used
in the clinical studies used for validation [49]. This
classification distinguishes patients according to the cancer
response (i.e., partial response (PR); complete response (CR);
stable disease (SD); and progressive disease (PD)). Due to the
limits of our model, which does not currently take into account
patient mortality, it was not possible to consider other criteria
such as the overall survival (OS), the disease free survival (DFS)
and the progression free survival (PFS).

In practice, this classification is based on the evolution of
the size of the tumours. More specifically, practitioners
calculate the sum of the products of the greatest
perpendicular diameters (SPD) of the measurable metastases,
which is a measure of an area, and analyze their evolution
between observations. However, in our model, we can
approximate the sum of the volume of tumours using Equation
(18).������� � =∫�� �� � *� �,�   ��                           (18)

With n being the minimal size of tumors to be included (in
number of cells).

Therefore, because our model returns a number of cells,
which is a proxy of the tumor’s volume, we converted the
threshold value of each class based on the volume a sphere
and the area of the disk (������ = ����tan� . ����3/2 ). For
example, Partial Response (PR) is defined as a SPD reduction
larger or equal to 50%, which corresponds to a decrease of at
least 64.65% (� . � . , 1− .53/2 ) in the total number of
metastatic cells. Concerning complete response (i.e., CR), a
patient is considered with a complete response if his or her��108 < 1, which mean that all metastases of at least 108

cells are gone.

Finally, in order to measure the performance of the
calibration and the capacity of the model to replicate the
results of clinical studies, we used the average Euclidean
distance between the simulation results and the clinical
studies, as calculated with equation (19).

(19)
First experiment

In this first experiment, we must first calibrate the model’s
parameters. In order to do so, we use data from six clinical

studies which allows us to validate our metastases growth
model during chemotherapy treatment [50-60]. Indeed, as it is
the least documented and modeled part of the cancer
evolution, we prioritize the validation of this part of the
model. The data from these clinical studies includes the stage
of the cancer, the method of patient selection and the protocol
of treatment received by patients for Capecitabine
chemotherapy. The first study tested two administration
protocols (i.e., a and b) on a sample of 35 and 40 patients. The
other studies tested only the first protocol (i.e., a) on a sample
of 42 patients, 301 patients, 32 patients, 96 patients and 51
patients. Patients in the protocol a received two daily doses
from day 1 to 14, followed by a period of rest (day 15 until 21),
and followed by a new treatment cycle starting on day 22.
Patients in the protocol b received two daily doses
continuously without rest periods. The model was calibrated
for these two administrations protocols and for both sample
sizes.

Selection of the virtual population: For each protocol/
population we aim to replicate, we must first create several
populations of virtual patients. To do so, it is not possible to
simply create a virtual population with similar statistics as the
real population. Indeed, the metastases distribution is
correlated with the characteristics of the primary tumor
because they share parameters. Therefore, we have to
simulate all virtual patients starting at T0, when the first
cancer cell appears. Subsequently, we determine two dates
per patient, T1 and T2, respectively, when the tumor size falls
within the range of interest, as defined by the studies, and
when it comes out of this range. The date of diagnosis Td is
selected randomly between T1 and T2, as shown in the Figure
10.

Figure 10 Curves explaining the selection of T1, T2 and Td.

Once the diagnosis date is fixed, we determine the stage of
the patient. From this large population of virtual patients, we
select those whose characteristics are similar to the actual
population to create our population test. Thus the total
number of virtual patients is known in advance and it is
necessary to initially simulate a large number of patients to
have a sufficiently large test population. In order to select a
virtual population similar to the actual populations selected in
clinical trials in the first experiment below we took patients
with stage 4 and with ��5 * 108 greater than 1, which
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corresponds to metastasis larger than 10 mm
[50-60].Calibration: In order to calibrate the model for the
configurations of the six clinical studies, we first need to
estimate the impact of each parameter on the results based
on their role in the model. For example, the percentage of
progressive disease is only defined by the parameter of the
Gompterz evolution a and the parameters of the
chemotherapy E0, Absorption and Dose. Other parameters
such as m, α and the maximum and minimum size of the

tumor in the selection of the virtual population only affects
the distribution of patients in the three categories: CR, PR and
SD.

Thus, to calibrate the model, we proceed by try-and-error,
using a dichotomy approach to set each parameter and
replicate the results of the clinical studies as best as possible
(Table 1).

Table 1 Calibration results.

 

 Parameters

Average
(Standard
deviation)

Average
(Standard
deviation)

Average
(Standard
deviation)

Average
(Standard
deviation)

Average
(Standard
deviation)

Average
(Standard
deviation)

Average
(Standard
deviation)

M

 

6 * 10-8

(3*10-9)

6 * 10-8

(3*10-9)

6 * 10-8

(3*10-9)

6 * 10-8

(3*10-9)

6 * 10-8

(3*10-9)

6 * 10-8

(3*10-9)

6 * 10-8

(3*10-9)

α2

 

0,66

(0,03)

0,66

(0,03)

0,66

(0,03)

0,66

(0,03)

0,66

(0,03)

0,66

(0,03)

0,66

(0,03)

P 0,87 0,87 0,87 0,87 0,87 0,87 0,87

Lower Limit 5 5 5 8 8 8 8

Upper Limit 45 45 45 60 60 60 60

E0 3,4*10-3 1,68*10-3 1,68*10-3 1,68*10-3 1,68*10-3 1,68*10-3 1,68*10-3

Absorption 0,87 0,87 0,87 0,87 0,87 0,87 0,87

Dose 0,732 1,25 1 1,25 1,25 1 1,25

Stage II II II III III III III

Patients Number 40 35 42 301 302 96 51

Chemotherapy
duration 109 109 126 147 123 231 42
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Simulation results: Different simulation tests were carried
out for each set of parameters. In all tests, the virtual
population samples were, like for calibration, different in size
to those of the six studies. In other words, protocol b of study
1 was tested with samples of 40 patients, protocol a of study 1
was tested with samples of 35 patients and protocol a was
tested by five studies (2 to 6). The model results of the
simulation tests are consistent with the results of the studies,
and our model can adequately reproduce reality. Figure 11
describes the average value of E of the simulation tests for
each experiment.

Concerning the duration of the simulated treatments, the
median duration reported in both studies was used for the
corresponding tests. The dose of chemotherapy was
considered constant throughout the treatment. Because our
model does not take into account side effects and patients
mortality rate, we adjusted the results of clinical studies to
remove these cases for comparison purpose. The final values
of the parameters for each calibration are shown in Table 2.
Concerning the parameter Absorption, it has been set equal to

Figure 11 Comparative analysis.

its defined value, while the average value of α2 was taken
[32,40].

Study 1
Protocol b

Study 1
Protocol a

Study  2
Protocol a

Study  3
Protocol a

Study  4
Protocol a

Study  5
Protocol a

Study  6
Protocol a



Study 1

Protocol b

 

 

CR 5,38 10,80,556

PR 17,2 11,888889

SD 54,84 63,80,556

PD 22,58 13,5

Study 1

Protocol a

 

 

CR 3,16 10,02,778

PR 22,11 1,81,111

SD 65,26 65,25

PD 9,47 66,11,111

Study 2

Protocol a

 

 

CR 2 75,83,333

PR 43 30,88,889

SD 48 56,02,778

PD 7 5,5

Study 3

Protocol a

 

 

CR 0,34 9,40,484

PR 21,06 18,29,677

SD 64,33 61,16,129

PD 14,27 1,11,371

Study 4

Protocol a

 

 

CR 0,3 70,17,742

PR 25,5 2,05,871

SD 49 61,96,774

PD 14,2 10,42,742

Study 5

Protocol a

 

 

CR

55 (CR + PR)

40,92742 (CR + PR)

 PR

SD 31 51,80,645

PD 6 72,66,129

Study 6

Protocol a

 

 

CR 0 4,99,026

PR 2 93,74,411

SD 53 59,63,712

PD 45 25,99,821

Discussion
The calibration was more difficult in the cases of clinical test

with small population sample. This difficulty can come from
several reasons. First, the small number of patients tested can
cause an inhomogeneous population. Similarly, random
number generation can also affect the distribution of the
population with such small size. Next, the relative inaccuracy
of the model may be too large with such small patient
populations, which may lead to results that are more
significantly different from actual data.

In addition, it is interesting to note that the set of
parameters to reach accurate results is not unique. Indeed, it
was possible to find another set of parameters (Table 3) with a
value of Absorption equal to 0.4, while keeping the others

parameters within the acceptable boundary, which also gave a
good calibration for the protocol a of the study 1. Indeed, E
was equal to 3,5 and here it is the new set of parameter:

The parameters of Protocol a of studies 1 and 2 are similar
and it is possible to use the parameters of one to simulate the
other with E<7 for 2 from study 1 and E <4.5 for 1 from study
2. Unfortunately, using the parameters of one protocol to
simulate the other has not given good results. This may be due
in part to the simplifications we introduced in order to
simulate these protocols. Indeed, we made two assumptions.
The first was to consider a constant dose for all patients during
the entire treatment. This assumption is correct insofar as
both studies administered at least 90% of the planned dose.
However, the second assumption was to take the same
treatment duration for all patients matching the median
treatment duration recorded in the clinical studies.
Unfortunately, in practice, treatment duration varies greatly
from one patient to another, especially due to the side effects
and patient's response. Consequently, a second phase of
validation will be performed with more specific data for each
patient from the Montreal Jewish General Hospital.

Table 3 Second set of parameters for protocol a study 1.

 

Parameters Average (Standard deviation)

M

6*10-8

(1*10-9)

α2 0,66 (0,01)

P 0,004

Lower Limit 34

Upper Limit 34

Dose 1,25

E0 1,13E-03

Absorption 0,4

Finally, once model calibration is extensively tested with
several protocols, it could eventually be used to simulate the
outcome of various treatments and protocols for specific
patients, and thus, serves as a medical decision support
system. Indeed, with some medical tests it would be possible
to estimate parameters a, m and α2 of the patient within a
certain margin of error. For instance, a could be approximated
using two imaging tests of the primary tumor to determine its
size at two different dates. m and α2 could be determined by
estimating the mass of visible metastases using imaging, which
should be equal to the one given by the Iwata model at the
same tumor’s size and time of diagnosis. Using these
estimated parameters, the outcome of a treatment for a
patient could be simulated with specific statistical distributions
for the unknown parameters, which would then give probable
outcomes for that patient.
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Table 2 Comparative analysis and euclidian distance.

Study
(literature)

Average of
simulation tests

Protocol a Study 1



Second experiment
In this experiment, we aim at assessing the capacity of the

model to interpolate the results of clinical studies with
different treatments, such as different dosage, different
protocols, and different treatment durations. To do so, we
used another set of studies conducted with another type of
chemotherapy used in colon and colorectal cancer, the 5-
fluorouracil (5-FU), which is well documented in the literature.
In particular, we used which regroup a number of clinical
studies on 5-FU, in order to define the response (CR + PR) as a
function of the average dose per time unit (for one cycle of
chemotherapy), using linear regression (Figure 12) [52].

First, we calibrated the model using with E=1.06 [53]. The
protocol targeted in this study is 5 day of 5-FU repeat every
four weeks. Once calibrated, we varied the dose (all other
parameters being unchanged). As see in Figure 12, that the
variation of the dose in the model has a greater impact than in
reality. In order to adjust this, we assumed that parameter E0,
which describes the effect of the drug on the decrease of the
tumor, should be a function of the dose. Therefore, in order to
adjust the impact of the dose, we introduced a new E0, as a
function of dose (Equation 20):�0 = ����� − �                (20)

Once a and b were calibrated, the new results presented in
Figure 12, an excellent capacity of the model to interpolate the
impact of the dose.

Figure 12 Response rate as a function of the dose intensity
(Black points are the studies from the black line the linear
regression associated; the square black is [53]; black plus
are the results of the model with E0 function of dose, the
dotted line the linear regression associated).

Similarly, we also tested the capacity of the model to
interpolate the impact the total treatment duration. Once
again, the impact of the treatment duration was more
significant than in reality. However, we were not able to find a
simple mathematical function capable of taking the impact of
treatment duration into account. We suspect that E0 must
either be a function of the total treatment duration, or must
change in time during treatment as if some sort of mechanism
would affect the capacity of the drug to decrease tumor size.
However, because the time of treatment described in the
literature, when available, is only an average, it is difficult to

properly define E0 with the data available. This must be done
with more specific data.

Conclusion and Future Work
This paper introduced a conceptual model aiming at the

development of a simulation environment capable of
emulating the simultaneous care trajectories of several of
cancer patients. More specifically, this paper introduces a
cancer evolution model, which is the first developmental step
of such a simulation environment.

Before this model can be implemented and tested within
the simulation environment, several other aspects of the
conceptual model presented in Figure 1 will have to be
developed. Along the same line, the hospital resources and
management processes will have to be modeled as well. But
one of the first things to do before its integration into the
simulation platform will be to validate the entire model with
actual data from the hospital.

Once completed, the configuration of the many agents of
this simulation platform will be adjusted in order to emulate
accurately reality. This paper shows that preliminary results
indicate that it is possible to develop such a model, although
development and analysis are required.

The validation of the entire simulation environment with
respect to actually data for a hospital will be part of an
extensive aspect of the project. Once validated, this simulation
environment will be used by the hospital in order to evaluate
the benefits of specific organizational changes to both the
hospital performance and the patients’ quality of life.

Concerning the development of the simulation platform, the
next step is be to calibrate and test this model with other
chemotherapies and treatment protocols with specific patient
data. However, there is still much work to do to improve this
overall model. For instance, one general improvement
concerns the modeling of the combined effects of radiation
and chemotherapy administered simultaneously. Another
important aspect concerns the modeling of the interactions
between cancer treatments and the treatments of other
health issues (i.e., co-morbidity).

Concerning the modeling of new treatment, the second
should also be adapted to include the impact of internal
radiation therapy (i.e., brachytherapy) as it is more and more
used in hospitals. Moreover, it would also be useful to take
into account the interactions between the different
treatments as surgery impacts metastasis angiogenesis, which
makes metastasis grow faster [41]. In addition, long-term
effects of treatment should be integrated as the tumor may
take some time to regrow after radiation therapy. However,
these effects are often random and causes for their presence
or absence are unknown, making them difficult to model.
Eventually, the model must also include mortality and its
expected step for any medium term following work. This
should be easy insofar as mortality models based on the
evolution of cancer already exist [54,55].
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Along the same line, the model must also include side
effects because they are important causes of resource
utilization variability between patients, as well as indicators of
patient quality of life.

Finally, this model of cancer colon and colorectal evolution
is easily adaptable to other type of carcinoma cancer [56],
because the equation used was made for general cancer and
not only for the colon and colorectal. For example, Iwata use
his model on liver cancer.
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