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Introduction
Since the genesis of Nanotechnology and nanoparticles, the field 

of polymeric nanoparticles (PNP) is broadly expanding and playing 
a crucial role in a wide spectrum of areas ranging from medicine to 
biotechnology, pollution control to environmental technology [1]. 
Nanoparticles (10 to 1000 nm) are formulated or engineered to carry 
an array of moieties in a con-trolled targeted manner and to achieve a 
greater pharmacological response [2,3]. Targeted and tumor-directed 
therapies are required to improve the outcome and reducing the 
toxicity [4]. With this, conjugation of drug-loaded nanoparticles along 
with targeting moieties can be used for receptor-mediated and targeted 
delivery [5-7].

The use of nanoparticles has a number of advantages viz. targeting, 
enhancements of therapeutic effect, enhancing permeability, dose 
reduction and toxic effects as well as availability in parenteral, pre-orals 
and topical [8,9]. Among the new drug delivery systems, polymeric 
nanoparticles have been considered as favorable and rising carriers for 
anticancer agents [10]. Moreover, these polymeric colloidal systems, 
after i.v. administration, may extravasate solid tumours and infected 
sites, where the capillary endothelium is defective, thus the tutor site is 
passively targeting via drug loaded nanoparticles [11].

Polymeric nanoparticles offer significant edge over other nano-
carrier, primarily since a tremendous versatility in polymer matrices 
allows for tailoring the nanoparticle properties. In addition, ease of 
production, ease of surface modification, encapsulation efficiency, 
payload protection, slow or fast polymer degradation and stimuli-
responsive polymer erosion for temporal control over the drug release, 
and can easily be scaled-up and manufacturing under Current Good 
Manufacturing Practices (cGMP) guidelines [12].

The polymer matrix of the nanoparticles must meet several 
requirements such as biocompatibility, easily biodegradable, better 
mechanical strength, and easy processing. For controlled release, the best 
known class of biodegradable materials is the poly (lactide- co-glycolide) 
s (PLGAs). Following the trend of green polymers, widely accepted and 
used are biopolymers viz. bovine serum albumin (BSA), human serum 
albumin (HAS), collagen, gelatin, and hemoglobin have been explored 
regarding their application to drug delivery systems [13,14].

Advantage of Nano Formulation
In comparison to conventional cancer treatments, the nano scale 

of these particulate systems also lowers the irritant reactions at the 
injection site [2].

1. Nanotechnology-based delivery systems can also protect drugs 
from degradation.

2. Due to decrease in the size the available enhanced product may 
vary in their physical properties.

3. Reduction in dose frequency.

4. Economic and Patient compliance.

5. Insoluble drugs can also be delivered using Nano-based delivery 
systems.

6. Nano-based systems can also incorporate previously rejected 
drugs or drugs with administration issues.

7. Due to specific pathophysiological feature of the diseased tissues, 
drug targeting is refined and improved.

8. An ideal targeting system should have longer circulating time 
and optimum concentration at target site.

9. Its pharmacological activity is not affected by longer circulating time.

10. Enhanced permeability and retention effect are characteristic 
features of tumor, aiding drug delivery.

11. Macrophages (liver and spleen) are passively targeted by drugs.

12. Blood Brain Barrier is the most efficient and challenging natural 
barrier for CNS targeting drugs which are Lipophilic. For such drugs 
nanotechnology is the simplest solution as such drugs reach the target 
site via ultra-filtration process due to its nano-size.

13. Enhance the oral bioavailability of the agents that are not 
effectively used orally.

Conventional Method of Preparation
Conventionally, two approaches are employed in synthesis 

of NPs: Pre-formed polymers dispersion method; and Monomer 
polymerization (Figure 1) [15].

Pre-formed polymer dispersion method
Many approaches have been suggested to prepare biodegradable 

NPs from polymers (PLA, PLG, PLGA and poly) E-caprolactone)) by 
dispersing the preformed polymers [16,17].
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Solvent evaporation method: This method involves, formation 
of an emulsion, using aqueous and organic phase. The polymer is 
completely dissolved in the organic solvent (e.g., Dichloromethane, 
chloroform, ethyl acetate). The drug is dispersed into the above 
preformed polymer solution. The aqueous solution is added to make 
an emulsion making an O/W (oil/water) emulsion. To prevent phase 
separation surfactant/emulsifying agents (gelatin, poly(vinly alcohol], 
polysorbate-80,) are added. The end step is to evaporate the organic 
phase either by temperature and pressure or by continuous stirring [18].

Spontaneous emulsification/solvent diffusion technique: This 
is an upgraded approach of the conventional solvent techniques 
(evaporation) [19], in which the oil phase consists of a water-soluble 
organic solvent (acetone, methanol) and water insoluble solvent 
(dichloromethane, chloroform) as oil phase. Aqua is used as the aqueous 
phase. Upon mixing the water soluble organic phase spontaneously 
diffuse into the water and thus precipitating out the water insoluble 
organic phase contain the drug as polymeric nano-particles. The 
remaining aqueous phase is then subjected to evaporation resulting in 
polymeric NP. The formation of NP’s depends upon the Oil-to-polymer 
ratio and offers advantages over the conventional methods.

Salting out/emulsification–diffusion method: Bindschaedler 
et al. [20] first disclosed a modified version of emulsion process that 
results in a salting-out process which avoids surfactants and chlorinated 
solvents. Polymer and drug are firstly dissolved in a water-miscible 
solvent such as acetone, it is then emulsified more like Ouzo effect [21], 
into aqueous gel containing a salting agent (electrolyte: MgCl2, CaCl2; 
non-electrolyte: Sucrose). Dilute it with sufficient water to facilitate 
the acetone diffusion into aqueous phase resulting in salting out as 
nanosphere/particles. Both the solvent and salting agent are removed 
via cross-flow filtration. The selection of appropriate salting agent 
is vital as it plays an important role in the encapsulation process of 
making the nanoparticles [22,23]. 

Nanoprecipitation: This approach is also known as solvent 

displacement method. The preformed polymer dis-solved into the 
organic layer is precipitated out by diffusion of organic solvent into 
the aqueous medium by either using surfactant [24]. The polymer 
(PLA), is dissolved in a water-miscible solvent of intermediate polarity, 
it’s diffusion into aqueous phase leading to the precipitation of 
nanoparticles [25].

Production of NPs using supercritical fluid technology: 
Conventional methods (solvent evaporation, coacervation and in situ 
polymerization) involve the use of toxic solvents and/or surfactants. The 
current green approach is the use of Super-critical fluids. This method 
utilizes CO2 in its supercritical state where it provided the ad-vantage of 
both liquid and gas, and above all is environment safe. Easy regulation 
of temperature, pressure, higher purity of NP’s and minimum-to-no 
solvent residue are the attractive features of this approach [11].

The NP’s are prepared via two methods, RESS (Rapid Expansion 
Supercritical Solution), RESOLV, SAS (solvent anti solvent).

RESS method is a simple approach which utilizes Supercritical 
CO2 as a solvent. The material of interest is completely dissolved into 
it, and drawn out of a nozzle by varying its temperature/pressure, thus 
precipitating out the NP’s and CO2 released as a gas. This is a clean 
technique as no residue of solvent remains. It is highly favourable 
for bio-erodible drug loaded polymers. The major drawback of this 
technique is the limited molecular mass (10,000) and solubility in SC-
CO2 [26,27].

RAS, a simple, but significant modification to RESS involves 
spreading of the supercritical solvent into a liquid solvent and also 
termed as RESOLV [28]. The liquid solvent apparently suppresses the 
particle growth in the expansion jet, thus making it possible to obtain 
primarily nano-sized particles.

In SAS method, is widely accepted for the drug-polymer which 
cannot be dissolved into SC-CO2. The drug-polymer is dissolved in a 
solvent which favours the SC-CO2. When the SC-CO2 is introduced 
into the solvent-drug-polymer mixture, at high pressures, enough anti-
solvent will enter into the liquid phase so that the solvent power will be 
lowered and the solute precipitates. After precipitation, when the final 
operating pressure is reached, the anti-solvent flows through the vessel 
so as to strip the residual solvent. This method, also called as gas anti-
solvent (GAS) technique [29].

Polymerization of monomers

Conventional emulsion polymerization: In this conventional system, 
the ingredients are comprised of surfactant, water, a monomer of low 
water solubility, and a water-soluble initiator. Colloidal stabilizers may be 
electrosteric, electrostatic, steric or exhibiting both stabilizing mechanisms. 
Initiation appears when a monomer molecule dissolved in the continuous 
aqueous phase of collides with an initiator molecule that might be a 
free radical or ions. Alternatively, through high-energy radiation the 
monomer molecule can be changed into an initiatingradical. Formation 
of solid particles and phase separation can occur before or after the 
termination of the polymerization reaction [30].

Surfactant-free emulsion polymerization: The varying quantities 
of surfactants are being utilized in the process of conventional emulsion 
polymerization systems, but there is need to eliminate those surfactants 
from the final product. Removal of surfactants increases the cost of 
production and is a slow process. Moreover, increasing energy and 
environmental concerns cannot be effectively addressed be-cause of 
these drawbacks. As a substitute, emulsion polymerization has been 
performed in the absence of added emulsifier, often referred to as 
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emulsifier-free, surfactant-free, or soap-less emulsion polymerization 
[31,32]. This technique has received considerable attention, to be used 
as a simple, green process for PNP production without the addition of 
stabilizing surfactant as well as for its subsequent removal.

Mini-emulsion polymerization: A distinctive formulation used 
in mini-emulsion polymerization consists of monomer mixture 
water, initiator co-stabilizer, and surfactant. A low molecular mass 
compound acts as the co-stabilizer and also the use of a high-shear 
device (ultrasound, etc.) is the main difference between mini-emulsion 
polymerization and emulsion polymerization.

The critically stabilized Mini-emulsions require a high-shear to 
reach a steady state and have an interfacial tension much greater than 
zero. With various co-stabilizers and initiator combi-nations versatile 
PNPs are well developed in the present era [33].

Micro-emulsion polymerization: The new and effective approach 
that has attracted significant attention for preparing nano sized polymer 
particles is a micro-emulsion polymerization. Although micro-
emulsion polymerization and emulsion appear similar the reason 
being both methods can produce colloidal polymer particles with high 
molar mass but they are entirely different when compared kinetically. 
Micro-emulsion polymerization exhibits two reaction rate intervals, 
whereas in emulsion polymerization three are detected. Both the 
average number of chains per particle and particle size are considerably 
smaller in micro-emulsion polymerization [34]. In the pro-cess of 
micro-emulsion polymerization a water soluble initiator is added to the 
aqueous phase of swollen micelles that are thermodynamically stable 
micro emulsions. The polymerization starts with the spontaneous 
formation of thermodynamically stable state and relies on high 
quantities of surfactant systems, which possess an interfacial tension, 
close to zero at the oil/water interface.

Interfacial polymerization: The Interfacial polymerization is one 
of the well-established methods used for the preparation of polymeric 
nano-particles [35]. It involves step i.e., polymerization of two reactive 
monomers or agents, which are dissolved respectively in two phases 
(i.e., dispersed-phase and a continuous phase), and the reaction takes 
place at the interface of the two liquids [36].

Preparation of nanoparticles can also be done by polymerization 

of monomers (Figure 2). Poly (alkylcyanoacrylates), PACA, being 
biodegradable is used to formulate nanoparticles by polymerization 
method. Here, the cyanoacrylic monomer under vigorous and 
continuous stir-ring is added to an aqueous solution of surface-active 
agents (polymerization medium) at ambient temperature to polymerize 
the alkyl cyanoacrylate. Drug is then dissolved in the polymerization 
medium either before the addition of the monomer or at the finish of 
the polymerization reaction. The NP suspension is then purified by 
ultracentrifugation or by re-suspending the particles in an isotonic 
surfactant free medium [37].

Different Methods for Preparation of Nanoparticles
Drug loading into the NPs is achieved by two methods: firstly, by 

adsorbing the drug after the formation of NPs by incubating them in 
the drug solution or secondly, by incorporating the drug at the time 
of NP production. It is thus evident that a large amount of drug can 
be entrapped by the process of incorporation when compared to the 
adsorption [38,39].

The kind of surface-active materials and stabilizers has an effect 
on drug loading [40]. Beside adsorption and incorporation, a novel 
method of drug loading for the water-soluble drugs was proposed by 
Yoo et al. [41-43]. In this method, drug was chemically conjugated 
into NPs, spontaneous emulsion solvent diffusion method was used 
to prepare conjugates of doxorubicin-PLGA and doxorubicin-loaded 
PLGA nanoparticles and found to have good encapsulation efficiency of 
96.6% as well as 3.5% loading of nano-particles (Figure 3a).

Using the ring opening polymerisation technique, studies show the 
preparation of H2N-PEG-PLA, which uses H2N-PEG as micro initiator 
[44] (Figure 3b).

Electro hydrodynamic atomization

This new method was first utilised by Xie et al. [45] who developed 
nanoparticles by electro hydrodynamic atomization (EHDA) of a 
PLGA solution using acetonitrile. This basic phenomenon has been laid 
by sir Raileigh who described the possibility to diffuse the fluid in small 

Figure 2: Schematic representation for the production of poly (alkylcyanoacrylate) 
nanoparticles by anion polymerization.

Figure 3a: Method for preparation of nanoparticles.
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formation of polymeric nanoparticles with reduced particle size and 
narrow size distribution.

Among the available controlled/living radical polymerization 
methods, mainly three approaches are presently successful and 
extensively studied viz. nitroxide-mediated polymerization (NMP) 
[49-52], atom transfer radical polymerization (ATRP) [53,54] and 
reversible addition and fragmentation transfer chain polymerization 
(RAFT) [55,56].

Dialysis
Dialysis offers an easy and most effective method for the preparation 

of small, narrow-distributed PNP [57-59]. Polymer is solubilised in an 
organic solvent and placed inside a dialysis tube with proper molecular 
weight cut-off. Dialysis was carried out against a non-solvent miscible 
with the former miscible and the displacement of the solvent inside 
the membrane is followed by the developmental stage of polymer 
aggregation due to less solubility and the formation of homogeneous 
suspension (Figure 4). It is thought that it may be based on a mechanism 
similar to that of nano-precipitation [60]. A number of polymer and 
copolymer nanoparticles [61,62] were obtained by this method.

Nanoparticles Produced by Desolvation of 
Macromolecules

Another technology that is useful for a wide range of polymers is 
based on addition of a desolvating agent or by desolvation by charge 
and pH changes, (ethanol or concentrated in-organic salt solutions) 
(Figure 5).

The main advantage of this process is that it does not require high 
temperature and, therefore, may be useful when heat sensitive drugs are 
used [63]. This process offers the advantage of producing nanoparticles 
directly in aqueous suspension, but, use of potentially toxic com-pounds 
such as glutaraldehyde and desolvating agents requires subsequent 
purification [64]. Nano-particle produced by the desolvation process, 
unfortunately have comparatively low yield [65]. In case of gelatine, 
different methods such as the two-step desolvation method [66,67] 
have been applied to produce nanoparticles.

High Pressure Homogenization 
Now a day, production of nano-particles is through widely spreaded 

 
Figure 3b: Method of preparation of H2N-PEG-PLA.

Figure 4: Schematic presentation of dialysis process.

Figure 5: PNP preparation by desolvation technique.

electrically charged droplets under the influence of an electrostatic 
field. Due to the electrostatic charge on droplets, maximum charge 
is displayed on the surface of the particles which further produces 
repulsion and thus, nanoparticle forms.

Controlled/Living Radical Polymerization (C/LRP)

The recent emergence of controlled or ‘living’ radical polymerization 
(C/LRP) processes has opened a new area using an old polymerization 
technique [46-48]. Implementation of C/LRP in the industry is 
important for developing aqueous dispersed systems that result in the 
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proven technology known as High-pressure homogenization (HPH). 
A formulation of paclitaxel is prepared by solvent-free method using 
serum albumin (3%-4%) known as Nab-paclitaxel which is con-verted 
to nanonization by utilising HPH technology, resulting in a colloidal 
solution [55]. This solvent-free 130 nm particle produced for paclitaxel, 
has been designed to overcome the problems associated with Kolliphor 
EL [68-70].

Micro Tube Pumping and Spin Penetration Techniques
This technique used to achieve controlled drug release, as per 

literature paclitaxel (Ptx)-loaded poly (lactic-co-glycolic acid) (Ptx-
PLGA-NPs), (PLGA) nanoparticles were prepared by the emulsion-
solvent evaporation method and then transferred to the luminal surface 
and inside ePTFE vascular grafts through micro tube pumping and spin 
penetration techniques [71].

Loading of Ptx-PLGA-NPs to an ePTFE Graft
Before loading, silicon tube was connected in the ePTFE vascular 

graft which has a same in-ternal diameter (6 mm) as that of the external 
diameter of that silicon tube. The aqueous solution containing Ptx-
PLGA-NPs of various concentrations was circulated through the tube 
and the graft with a micro tube pump at a flow rate of 1.91 mL/min for 
30 min. Then, the graft with the Nanoparticles on its luminal surface was 
fixed in a polypropylene tube vertically connected to a directly driven 
stirrer. The NPs of the luminal surface of the graft were infiltrated into 
the inner part of the graft due to centrifugal force in action arise from 
spinning of the direct driven stirrer (1000 rpm) for 10 min. The above 
process was repeated three times, and then the NP-loaded grafts were 
freeze-dried overnight [71].

Targeting to Cancer Cell
The delivery of nanoparticles to specific sites can be through 

size dependant passive targeting or by active targeting in which, 
passive targeting depends on both tumor structure and the structure 
of surrounding inflamed tissues (reference). The nanoparticulate 
delivery systems may exploit a characteristic of solid tumors by the 
enhanced permeability and retention (EPR) effect in which tumor 
tissues demonstrate several distinctive characteristics such as hyper 
vasculature, defective vascular architecture and a deficient lymphatic 
tissue/system.

Drainage leads to accumulation of macromolecules and retention 
in tumor cells for a longer period of time (Figure 6). Active targeting 
has been performed to achieve a high degree of selectivity to 
specialized tissues and to enhance the uptake of NP’s into target areas 

such as cancer cells and angiogenic micro capillaries growing around 
malignant cells (Figure 7). Nano-particles are modified to target basic 
characteristics of cancer cells such as accelerated proliferation and 
particular antigen presentation [72]. Nano-particulate delivery systems 
utilize specific targeting agents for cancer cells and minimize the uptake 
of the anticancer agents with the help of normal cells, enhance the entry 
and release of the agent in tumor cells. These delivery systems include 
the anticancer agent, a targeting moiety, and a carrier and penetration 
enhancer. The types of molecules which are capable of specifically 
recognizing and binding to other biological molecules are antibodies, 
enzymes, receptor ligands, and receptors. In all cancer therapies, 
targeting over surface modification provides numerous approaches for 
increasing treatment specificity and accuracy while reducing toxicity to 
healthy cells [2].

Passive targeting- The combination of leaky vasculature and poor 
lymphatic drainage results in the well-known Enhanced Permeability 
and Retention (EPR) effect (Figure 6) [73].

Active targeting involves drug delivery to a specific site based 
on molecular recognition. One approach is to couple a ligand to 
nanoparticles which can interact with its receptor at the target cell site 
(Figure 7) [74-94].

Ligands that Binds to the Cancer Cell Receptors
Cancer cells have many types of receptors and they are used for 

targeting purpose. These receptors and their ligands are given below 
(Table 1). Some agents are used as theragnostic agents, for therapeutic 
and diagnostic purpose, which are targeted to the specific cell by 
bonded ligand [95].

Functionalization of Polymer with Ligand for Target 
Specific Delivery 

The modifications in surface of nanoparticulate include coating/
linking with linking with folate, antibodies, adjuvants, proteins, ligands, 
antigens, enzymes, pH sensitive agents, and a plethora of other substances 
[1]. PLGA-based nanoparticles grafted with the RGD-peptidomimetic 
(RGDp), or RGD peptide would target the tumor endothelium and 
would further enhances the anti-tumor efficacy of PTX. According 
to in-vitro studies, it was found that RGD-grafted nanoparticles were 
more associated to Human Umbilical Vein Endothelial cells (HUVEC) 
on binding to αvβ3 integrin than non-targeted nanoparticles. In-vivo 
studies demonstrated that the targeting of RGD and RGDp-grafted 
nanoparticles to tumor vessels as well as the effective retardation of 
TLT tumor growth and extended survival chances of mice treated by 
PTX-loaded RGD-nanoparticles when compared to non-targeted NP’s. 
Hence, the targeting of anti-cancer drug to tumor endothelium by 
RGD-labelled NP is a promising approach [96].

Figure 6: Passive targeting - The combination of leaky casculature and poor
lymphatic drainage resultd in the well-known Enhanced Permeability and Re-
tention (EPR) effect [73].

Figure 7: Active targeting involves drug delivery to a specific site based on mo-
lecular recognition. One approch is to couple a ligand to nanoparticles which can 
interact withits receptor at the target cell site [74, 75].
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with a coating of poloxamer and poloxamine. It was observed that 
hepatic uptake decreased about 20% with poloxamer-188 and 40% 
with poloxamer-338, whereas a decrease about 60% was observed for 
poloxamine-908 coated na-noparticles. As a result poloxamine was 
considered more effective coating material to avoid the liver capture of 
rabbits as compare to poloxamer [103].

Cyclodextrin/Carbohydrate Coated NPs
Mononuclear phagocyte system (MPS) is the natural defence 

mechanism by which the body prevents any unwanted entry of 
pathogens. Many times nanoparticles are subjected to MPS leading to 
its phagocytosis or elimination. Incorporation of carbohydrate coating 
over the nanoparticles of interest was found to by-pass the MPS uptake, 
as reported by Cho et al. [104]. For DNA, targeted delivery NPs of 
PLA and poly (L-lysine)-grafted-polysaccharide were developed [105]. 
They were found to be resistant to self-aggregation or clumping and 
adsorption (non-specific) of serum proteins.

The nanoparticles whose surface was coated with Cyclodextrin was 
found to increase loading efficiency of water soluble drugs and also the 
bioavailability of drugs that are poorly water soluble and are considered 
for targeted delivery. Another approach to achieve higher loading 
capacity of drug and to increase the stability of parent Cyclodextrin 
the Poly (isobutylcy-anoacrylate), PIBCA nanoparticles, coated with 
hydroxypropyl or natural Cyclodextrin are used.

Polysorbate-Coated NPs to Penetrate the Blood-Brain 
Barrier

Blood Brain Barrier is the most efficient barrier system in the 
entire human body, making it difficult for the transportation of drugs 
(hydrophilic and similar) across it. Thus it becomes mandatory to 
enhance the drug transport. There have been suggested mechanisms 
to enhance the drug transport across BBB (Figure 8) via coated NPs 
such as:

(i) Binding to inner endothelial lining of brain capillary, thus, 
particles deliver drugs by providing a difference in concentration 
gradient, thus improving the passive diffusion

(ii) By phagocytosis [106]. 

Studies show a higher permeation across the biological matrices 
and membranes, when nano-particles are coated with surfactants, e.g., 
polysorbate-80 coated NP’s [107]. It was show-cased (Troster et al.) 
[108], a 9-fold increase in accumulation of radioactivity in the cerebral 
area post I.V. administration using polysorbate-80 coated radioactive 
(14C)-PMMA nanoparticles. A 60-fold increase in brain concentration 
was reported (Gulyaev et al. [109], when doxorubicin was bound to 
polysorbate-80 coated PBCA nanoparticles which were systemically 
administered.

Cancer Cell Receptors Ligands References
Toll-like receptors MPLA [76]

C-type lectins Mannan [77]
Siglec Anti-Siglec-7 polyclonal antibody [78]

Claudins CPE30 [79]
αvβ1 integrins RGD/RGDp LDV/LDVp [80]

STAT3 JSI-124 [81]
ICAM-1 Clabl [82]

Folate receptor Folate [83]

Specific receptor of lymphatic 
metastatic tumors LyP-1 [84]

Prostate specific receptor PSMA [85]
αvβ3 integrins RGD [86]

Nucleolin AS1411 [87]
HER-2 rhuMAbHER2 [88]

Transferrin receptor Lactoferrin [89]
Opioid receptor Simil-opioid peptide (g7) [90]
Opioid receptor Simil-opioid peptide (g7) [91]

Specific brain receptor Pep TGN [92]
Antibody binding site on cell Monoclonal antibody [93]

Proteins, Phospholipids, Sugar 
on the cell Aptamer [94]

Table 1: Ligands that binds to the cancer cell receptors.

It was concluded that vitamin E TPGS (d-α-Tocopheryl 
polyethylene glycol 1000 succinate) has great advantages for the 
manufacture of controlled release polymeric nanoparticles of paclitaxel 
and other anti-cancer drugs. Nanoparticles of with narrow distribution 
can be obtained with drug encapsulation efficiency as high as 100% and 
the release kinetics can also be controlled [97].

The targeting characteristics of Polystyrene-latex nanospheres 
(PSL-NS, mean diameter, 85 nm) coated with (LPS, high affinity 
to hepatocytes) was evaluated at hepatocytes and PSL-NS surfaces 
[98]. Hepatocytes were adhered specifically with the lactosyl-
polystyrene coated dishes made of the same materials as PSL-NS. 
Surface modification of biodegradable and long-circulating polymeric 
nanoparticles has been achieved mainly by two methods: (i) surface 
coating with hydrophilic polymers/surfactants; and (ii) use of 
hydrophilic segments to develop biodegradable copolymers.

PEG and PEO-coated NPs
A model for repulsion of proteins from the solid substrate was 

proposed by Joen et al. [99] which delivers a basis for the prevention 
of opsonin deposition. The PEG with high surface density and long 
chain lengths are necessary for low protein adsorption and above all 
coated PEG increases the systemic circulation of nanoparticles. The 
nanoparticles shows lower up-take in the liver but shows higher uptake 
in spleen because of removal of PEG coating so it is useful in spleen 
targeting [100].

An attempt was made to study the effect of surface density of PEO 
on the compliment consumption by using diblock polymer of PLA and 
polyethylene oxide (PLA–PEO) Vittaz et al. [101]. It was observed that 
as the PEO density on the surface of the Nanoparticles increases with 
the decrease in compliment consumption due to steric repulsion of the 
surface to proteins.

Poloxamine and Poloxamer Coated NPs
In a study conducted by Illum and Davis [102], long-circulating 

NP’s of polystyrene and poly (methyl methacrylate) were developed 
Figure 8: Drug loaded polymeric nanoparticle (A) deliver higher amount of drug 
across BBB as comprate to free drug (B).
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Formulation of Actively Tragetting Nanoparticles (ATN) prepared 
(solvent evaporation) by conjugating transferrin to PEG-coated 
biodegradable polycyanoacrylate NP, for the enhanced delivery of 
Paclitaxel. Resulting, Avg. Encapsulation Efficiency=93.4 ± 3.6%; Particles 
Size=101.4 ± 7.2 nm; Zeta potential=(-13.6 ± 1.1 mV) [110-128].

Patent Invention and Future Prospect
Nanotechnology holds an advantage in formulating nature 

derived products (Table 2). Nanoparticles-mediated natural products 
delivery diminishes the toxicity to healthy cells [129]. Studies claim 
a considerable improvement in treatment using nanotechnology in 
comparison to the conventional methods for cancer such as chemo-
preventive/therapeutic approaches. Nano-technology also portrays a 
promising future in the areas of diagnosis, imaging, and therapeutics. A 
large of research in nanotechnology is dedicated to enhance the science 
of nanoparticles as a drug delivery system. Considerable amount of 
Construct, based on principles of nanotechnology have presently on-

going clinical development and also pre-clinical development, with a 
few having achieved FDA approval.

Achieving a forefront in the application of nanotechnology, with a 
focus on herbal/naturally derived products will aid us in building drug 
systems with viable and tangible results against numerous diseases 
[130,131]. There has been voiced a concern regarding the universal 
safety as well as environmental effects and common health effects on 
those included into manufacturing sciences, these points in questions 
will be addressed in due course of time [132].

Conclusion
The Polymeric nanoparticles are manufactured and modified 

by surface modification reaction for target specific drug delivery 
and it can also be used for delivering hydrophobic drug. The surface 
modification of polymeric nanoparticle is used to improve the systemic 
circulation, drug loading and enhancement in controlled drug delivery. 
Certainly, modification in surface is useful in achieving these goals. 

Drug Summary of Invention References
Docetaxel Docetaxel nanoparticle coated with PLGA bock copolymer conjugated with low mol. Wt. PSMA ligand. [111]

Curcumin Polymeric nanoparticle coated N-isopropylacryl amide (NEPAAM), acrylic acid (AA), and at least one vinyl 
monomer selected from the group consisting of vinyl acetate, 4-vinyl benzoic acid etc.. [112]

Dexomethasone Dexomethasone coated woth chitosan chloride and/or chitosan glutamate by ultrasound sonication. [113]

Beclomethasone
Beclomethasone coated with a diblock poly (lactic) acid-poly (ethylene) glycol copolymer; 1,2 distearoyl-sn-
glycero-3-phosphoethanolamine poly(ethylene)glycol copolymer by ring opening polymerization techniques 

(ROMP).
[114]

Curcin Curcin planetary ball milled (PBM) nanoparticles coated alginate, cellulose, collagen, starch and PEG conjugated 
with folate. [115]

Mitoxantrone
Mitoxatrone coated with polyethylenes, polycarbonates, polyanhydrides etc.

Conjugated with PSMA. [116]

Carbazitaxel Carbazitaxel coated with diblock poly (lactic) acid-poly(ethylene)glycol conjugated with a low-molecular weight 
PSMA ligand. [117]

Drug Summary of Invention References
Docetaxel Docetaxel nanoparticle coated with PLGA bock copolymer conjugated with low mol. Wt. PSMA ligand. [111]

Curcumin Polymeric nanoparticle coated N-isopropylacryl amide (NEPAAM), acrylic acid (AA), and at least one vinyl 
monomer selected from the group consisting of vinyl acetate, 4-vinyl benzoic acid etc.. [112]

Dexomethasone Dexomethasone coated woth chitosan chloride and/or chitosan glutamate by ultrasound sonication. [113]

Beclomethasone
Beclomethasone coated with a diblock poly (lactic) acid-poly (ethylene) glycol copolymer; 1,2 distearoyl-sn-
glycero-3-phosphoethanolamine poly(ethylene)glycol copolymer by ring opening polymerization techniques 

(ROMP).
[114]

Curcin Curcin planetary ball milled (PBM) nanoparticles coated alginate, cellulose, collagen, starch and PEG conjugated 
with folate. [115]

Mitoxantrone
Mitoxatrone coated with polyethylenes, polycarbonates, polyanhydrides etc.

Conjugated with PSMA. [116]

Carbazitaxel Carbazitaxel coated with diblock poly (lactic) acid-poly(ethylene)glycol conjugated with a low-molecular weight 
PSMA ligand. [117]

Calcium channel blocker
Drug Np comprise hydroxy-terminated or epoxide-terminated and/or activated multiblock copolymer modifying 
the surface by lyophilization technique to produce a physically adsorbed coating and epoxy-derivatization to 

functionalize the surface.
[118]

Paclitaxel Paclitaxel coated with PLGA conjugated with galactosamine targeting ASGP receptor by emulsion/solvent 
evarporation method [119]

Gefitinib Gefitinib nanoparticle drug delivery systems including a modified PLGA-b-PEG block copolymer. [120]

Paclitaxel Paclitaxel coated with Poly(2-(dimethylamino)ethyl methacrylate-co-methacrylic acid(PDM) targeting to cancer 
cell. [121]

5-flurouracil 5-flurouracil coated by bovine serum albumin conjugated with folate by coacervation method. [122]
Paclitaxel Paclitael coated with Human serum albumin by emulsion solvent evarporation method [123]
Paclitaxel Gelatin PLGA nanoparticles containing paclitaxel coated with bioadhesive molecules [124]

Ganciclovir Hollow protein nanoparticles containing ganciclovir encapsulating thymidine kinase (HSV1tk) modified to display 
a hepatitis B virus surface-antigen for hepatocyte recognition [125]

Ganciclovir Nanoparticle of Ganciclovir containing thymidine kinase modified with epidermal growth factor receptor [126]
Cetuximab Composition and method for targeting cancer cell by administering Cetuximab in combination with tetrac or triac [127]
Resveratrol Resveratrol coated with polymer functionalized with RGD peptide, which is recognized by ∞vβ3 receptor [128]

Table 2: Patent invention and future prospect.
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From the chemistry viewpoint, it is important to synthesize polymers 
and copolymers to meet the hydrophilic and hydrophobic properties. 
Production of Nanoparticles using the eco- friendly processes like 
supercritical fluids is a promising area of research to develop products 
which are free from the unwanted toxic residual solvents. Various 
patents are on targeting of polymeric nanoparticles. Different types of 
methods are used for preparation of nanoparticles and improve drug 
loading in dosage form (PNP). Nanotechnology is promising in Novel 
Drug Delivery System and it is emerging field in Pharmaceutical field.
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