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Introduction

Rho-associated coiled-coil-forming protein kinase (Rho kina-
se or ROCK) is a serine/threonine kinase and one of the major 
downstream effectors of the small GTPase RhoA [1-3]. There is 
compelling evidence demonstrating that activation of RhoA/
ROCK signaling regulates a plethora of cellular functions, in-
cluding adhesion, motility, proliferation, contraction, actin 
cytoskeleton organization, inflammation, cytokinesis and gene 
expression, all of which are involved in the pathogenesis of 
cardiovascular diseases such as hypertension, restenosis, athe-
rosclerosis, stroke and heart failure. There are several recent 
reviews focusing on the physiology and pathophysiology of 
ROCK signaling [4-6], but the discussion on how ROCK regu-
lates vasomotor function is lacking. The involvement of ROCK 
in hypertension [7], atherosclerosis [8], coronary heart disease 
[9], stroke [10], pulmonary artery hypertension [11], and neuro-
logical disorders [12] has been well recognized. However, the 
current understanding of ROCK signaling mechanisms contri-
buting to vascular tone, agonist-induced constriction and car-
diovascular disease is almost exclusively based on the study of 
intact animals, conduit arteries or cultured vascular cells, and 
little is known about how ROCK regulates vascular function at 
the microcirculatory (i.e., resistance artery/arteriole) levels. Mo-
reover, elevation of the circulatory level of endothelin-1 (ET-1), 
a potent vasoconstrictor, in association with patients with coro-
nary events is well documented, but its pathophysiological role 
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in vasomotor control remains elusive. In this article, we provide 
an overview of ROCK signaling in the vasculature in relation to 
ET-1 activation and coronary microvascular disorders associa-
ted with cardiac syndrome X. The ROCK as a therapeutic target 
and the use of its inhibitors for the treatment of coronary ische-
mia are discussed.

Molecular Biology of ROCK

ROCK and Smooth Muscle Contraction. Myosin light chain (MLC) 
phosphorylation is indispensable for the activation of contrac-
tile elements in smooth muscle contraction. The traditional 
signaling pathway for smooth muscle contraction considers 
that myosin light chain kinase (MLCK) and myosin light chain 
phosphatase (MLCP) work coordinately to regulate MLC phos-
phorylation. Either activation of MLCK or reduction of MLCP 
activity will increase MLC phosphorylation, leading to smooth 
muscle contraction. Activation of ROCK was initially found to 
enhance smooth muscle contraction in a calcium-independent 
manner by inhibiting MLCP through phosphorylation of its 
myosin binding subunit. This pathway has been considered as 
a major mechanism for calcium sensitization in smooth muscle 
cells [2,13-15]. ROCK can also stoichiometrically phosphorylate 
MLC at serine-19 [16], the same molecular target for MLCK, and 
thereby  facilitate actin activation [17] and stress fiber assem-
bling [18]. It is speculated that MLC phosphorylation by ROCK 
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also contributes to the regulation of smooth muscle contrac-
tion in addition to MLCK activation. However, this direct phos-
phorylation pathway has not yet been demonstrated to be a 
physiologically significant mechanism in smooth muscle con-
traction [14]. 

ROCK Isoforms and Biological Function. Two isoforms of ROCK, 
ROCK1 and ROCK2, have been identified and are involved in va-
rious physiological and pathophysiological signaling pathways. 
ROCK1 is also known as p160-ROCK and ROKb, and ROCK2 is 
also known as Rho-kinase and ROKa. Human ROCK1 and ROCK2 
genes are located on chromosome 18 (18q11.1) and chromo-
some 2 (2p24), respectively [1,19]. ROCK1 and ROCK2 contain 
1354 and 1388 amino acids, respectively, and each isoform 
contains a kinase domain, a regulatory domain, and a pleckrin-
homology domain. The two isoforms are highly homologous, 
sharing 65% homology in amino acid sequence and 92% ho-
mology in their kinase domains. Animal studies have shown 
that ROCK1 is expressed preferentially in the lung, liver, spleen, 
kidney and testis, whereas ROCK2 is highly expressed in the bra-
in and the heart [20-22]. At the molecular level, ROCK requires 
dimerization before activation [23-25] and a hydrophobic motif 
is essential for kinase domain dimerization and substrate phos-
phorylation [25]. ROCK translocates to the cell membrane upon 
stimulation, and is active only when it is bound to the mem-
brane [26-28]. Alternatively, ROCK activation can be achieved by 
removal of its inhibitory domain [29,30] or by phosphorylation 
[31,32]. Recent studies indicate that phosphorylation of ROCK2 
by Polo-like kinase-1 is involved in cytokinesis and cancer de-
velopment [31,32]. There are some studies supporting the idea 
that the kinase activity of ROCK can be modulated through an 
auto-phosphorylation process after Rho binding [1,20,33-35]. 
ROCK phosphorylation status can be affected by TNF-a  [36], 
osteopontin [35], thrombin [26] and ROCK inhibitors [25,32,33]. 
Although the activity of many kinases can be regulated by phos-
phorylation, how phosphorylated ROCK plays a role in the regu-
lation of cardiovascular function is not completely understood.

Using genetic approaches, deletion of ROCK1 (i.e. ROCK1-/-) re-
sulted in failure of eyelid and ventral body wall closure, leading 
to a neonatal phenotype with open eyes at birth and ompha-
locele [21]. Most ROCK1-/- mice died soon after birth because 
of cannibalization of the omphalocele by the mother. A few 
ROCK1-/- mice survived to adulthood with a phenotype that 
appeared normal and no apparent compensatory changes in 
ROCK2 levels [21]. By comparison, a ROCK2 knockout affected 
viability since more than 90% of the embryos died in utero du-
ring the late stage of pregnancy [22]. The surviving ROCK2-/- 
mice were born as runts and although fertile, they subse-
quently showed growth retardation, placental dysfunction 
and thrombus formation. [22]. Taken together, these studies 
show that there is no compensatory increase in one isoform in 
response to loss of the other isoform[22,37-40]. Interestingly, 
both ROCK1 and ROCK2 knockouts affect eyelid formation and 
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function [21,38] with reduced intraocular pressure and corneal 
neovascularization [41].

In the cardiovascular system, ROCK1 appears to mediate leu-
kocyte/macrophage recruitment and neointima formation 
following vascular injury [42]. Interestingly, ROCK1-deficient 
macrophages exhibit impaired ability to take up lipids and 
to develop into foam cells when challenged with modified 
low-density lipoprotein [40]. Transplant of bone marrow from 
ROCK1-deficient mice into low-density lipoprotein receptor 
knockout mice protected the animal from the development 
of atherosclerosis [40]. These studies highlight the significant 
role of ROCK1 in atherogenesis. Furthermore, mice deficient in 
ROCK1, but not ROCK2, are protected from the development 
of perivascular fibrosis [39,43,44] and cardiomyocyte apoptosis 
[29] in the hypertrophied heart secondary to pressure overload. 
Studies on the role of ROCK2 in the cardiovascular system are 
sparse. In the pulmonary circulation, ROCK2 protein expression 
and activity are correlated to the development of arteriolar hy-
pertrophy in the rat model of pulmonary arterial hypertension 
[45]. A more recent study has shown that cardiac hypertrophy 
induced by systemic administration of angiotensin II is signifi-
cantly attenuated in mice subjected to cardiomyocyte-specific 
deletion of ROCK2, suggesting the prominent role of ROCK2 in 
the adaptation of cardiomyocytes to pressure overload and/or 
to angiotensin II activation [46]. In a cellular study, using an siR-
NA approach, selective suppression of ROCK2 expression sig-
nificantly attenuated vascular smooth muscle cell contraction 
by modulating myosin phosphatase activity [47]. These studies 
suggest a prominent and specific role for ROCK1 and ROCK2 in 
cardiovascular function and disease development. However, 
the role of ROCK in the regulation of vasomotor function at the 
level of the microcirculation remains unclear.

ROCK Expression and Microvascular Regulation 

Vascular Expression. The term microcirculation is used to descri-
be a group of small vessels embedded within a tissue responsi-
ble for the distribution and regulation of blood flow to/within 
the tissues. Based on size and function, the microcirculation 
consists of arterioles, capillaries, and venules. Arterioles (about 
10-100 µm in diameter) play a key role in blood flow regulation 
by changing flow resistance  (i.e., diameter) through relaxation 
and contraction of smooth muscle, and in blood pressure regu-
lation if a systemic change in arteriolar tone is achieved. ROCKs 
are expressed in both arteries and arterioles in different organ 
systems. For example, ROCK2 expression in the brain is much 
higher in cerebral arterioles than in surrounding neurons [48]. 
Similar results have been shown in pulmonary [49,50] and re-
tinal arterioles [51] with both ROCK1 and ROCK2 isoforms ex-
pressed in the arteriolar wall. Immunohistochemical studies of 
large conduit vessels such as femoral [52] and carotid arteries 
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[42] have shown that ROCK2 is mainly distributed in the me-
dial layer. In ROCK2 deficient mice, where the disrupted ROCK2 
gene is replaced by a b-Gal gene knock-in, the reporter gene 
product LacZ is strongly expressed in the medial layer of the 
umbilical artery [22], indicating a vascular smooth muscle-do-
minant ROCK2 expression pattern.

It is well documented that both ROCK1 and ROCK2 are strongly 
expressed in the heart [20,22,53,54], but their expression in the 
coronary vasculature is less studied. Confocal immunofluores-
cence results suggest that ROCK1 expression is stronger in rat 
coronary capillary endothelial cells than in their adjacent car-
diomyocytes and is indiscriminately distributed to the luminal 
and abluminal sides of the capillary membrane [55]. The cell 
membranes of pericytes also strongly express ROCK1 [55]. Re-
cently, we have reported in the porcine heart that ROCK1 and 
ROCK2 expression are about 2.6- and 4.7-fold higher, respec-
tively, in coronary arterioles than in their adjacent cardiomyo-
cytes and that ROCK2 expression in arterioles is 2-fold higher 
than ROCK1, with preferential medial-layer distribution [56]. 
This is consistent with the finding that ROCK2 plays a predomi-
nant role in the regulation of vascular smooth muscle contrac-
tion [47].

Vasomotor Regulation. The involvement of ROCK in pre-arte-
riolar and arteriolar regulation of vasomotor activity has been 
studied in cerebral [57-59], renal [60,61], retinal [62-64], and 
mesenteric [65,66] tissues. ROCK may be important in the re-
gulation of renal afferent arteriolar resistance by activating the 
myogenic response [60,61]. Pharmacological studies also have 
shown that ROCK-mediated vasoconstriction is more apparent 
in the renal afferent, but not efferent, arterioles [61]. However, 
the underlying mechanism responsible for this heterogeneous 
vasomotor regulation in renal microvasculature is not currently 
understood. The influence of ROCK on cerebral vascular reac-
tivity appears to be enhanced in animals exposed to cigaret-
te smoke [59] or with type II diabetes [57]. This enhancement 
might be the result of endothelial dysfunction induced by those 
risk factors [57,59]. ROCK also participates in the vasomotor re-
gulation of retinal arterioles from various species, including hu-
mans [62], and may be involved in the endothelial dysfunction 
and elevated oxidative stress elicited by C-reactive protein 
[63,64]. These studies provide direct evidence that ROCK plays 
an important role in regulating arteriolar function in health 
and disease. Activation of RhoA/ROCK signaling is also closely 
associated with hypertensive disease by modulating arteriolar 
tone and reactivity [7]. Interestingly, inhibition of ROCK appears 
to preserve endothelium-dependent dilation of coronary arte-
rioles [67], reduce myocardial infarct size and exert cardiopro-
tective effects on coronary ischemia-reperfusion injury [68]. It 
is worth noting that the potent vasoconstrictor ET-1 released 
during ischemia-reperfusion has been implicated as a detri-
mental peptide determining the outcome of myocardial injury 
[69,70]. It is likely that activation of ROCK signaling by ET-1 may 
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contribute to the pathophysiology of coronary dysfunction and 
disease development as discussed below.

ROCK Mediates ET-1-induced Vasoconstriction 

ET-1 is a vasoactive peptide that has been reported to elicit ro-
bust and sustained constriction of coronary arterioles in vivo 
[71-73] and in vitro [74-77], and has thus been implicated in 
modulating coronary microvascular tone [78]. Hitherto the me-
chanisms contributing to the ET-1-induced constriction in the 
coronary microcirculation have been limited to the ET-1 recep-
tor activation and the contribution of Ca2+. Our recent study 
utilizing an in-vitro approach of isolated porcine coronary ar-
terioles suggests that the ROCK signaling pathway plays a key 
role in regulating coronary arteriolar tone and ET-1 induced 
constriction [56]. The vasomotor influence of ET-1 along with 
its physiological/pathophysiological implications in relation to 
ROCK in coronary arterioles are delineated below. 

ET-1 Synthesis and Receptor Activation. ET-1 is a 21-amino-acid 
peptide produced primarily by the vascular endothelial cells 
[79]. However, evidence has shown that ET-1 can also be syn-
thesized from vascular smooth muscle cells [80], cardiomyo-
cytes [81-83] and cardiac fibroblasts [84]. Cells initially produce 
the ET-1 precursor, preproendothelin-1, which is subsequently 
processed to yield a biologically inactive intermediate, big ET-1 
[85]. This precursor peptide is proteolytically cleaved by endo-
thelin-converting enzyme (ECE) to generate ET-1 [85,86], which 
is preferentially released from the abluminal side of the endo-
thelium in the vasculature. Interestingly, recent evidence has 
shown that ECE and ET-1 are highly expressed in the neointimal 
smooth muscle layer of human coronary arteries from patients 
at early stages following percutaneous coronary intervention 
[87], suggesting the close relation of ET expression with vascu-
lar injury. In addition, ECE and ET-1 expression were detected in 
both the endothelial and smooth muscle layers of coronary ar-
teries obtained from hearts with cardiomyopathy [88]. In addi-
tion to the vasculature, the ET-1 synthesis in cardiomyocytes 
is also increased in the failing heart [81,83,89]. Taken together, 
these studies support the possible contribution of vascular (i.e., 
endothelial and smooth muscle cells) and myocardial ET-1 to 
coronary vascular regulation in the disease state. 

ET-1 exerts its function via binding to two distinct receptor sub-
types, i.e., ETA and ETB. Activation of either ETA or ETB receptors 
on vascular smooth muscle leads to sustained vasoconstriction 
[79], whereas activation of endothelial ETB receptors promotes 
vasodilation [90,91]. Receptor binding and molecular studies 
have identified strong expression of ETA receptors in the vascu-
lar smooth muscle layer along with a minimal amount of ETB re-
ceptors in human small coronary arteries [92,93] and arterioles 
[74]. Clinical and experimental studies have shown that intraco-
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ronary administration of an ETA receptor antagonist in human 
subjects with angiographically normal coronary arteries [78], as 
well as in dogs and pigs, results in coronary vasodilation and 
increased coronary blood flow [76,94], suggesting a role for ET-
1-mediated activation of ETA receptors in regulating coronary 
arteriolar tone. On the other hand, a tonic vasodilator influence 
of ETB receptors in the porcine coronary microcirculation has 
been suggested using a non-selective ETA/ETB antagonist [94]. 
These in-vivo receptor studies have been substantiated by in-
vitro evidence that ET-1-induced constriction of isolated epi-
cardial and endocardial coronary arterioles are blocked by ETA 
receptor blockade [74-77], whereas ETB receptor blockade en-
hances constriction of coronary arterioles [75,77]. In the isolated 
human coronary arterioles, ETB receptor blockade did not alter 
the vasoconstrictor response to ET-1 [74], but it is important to 
note that the endothelial function might have been diminished 
in these vessels since they were obtained from patients with 
various cardiovascular risk factors undergoing coronary bypass 
surgery. Collectively, these studies highlight the predominant 
role of ETA receptors in the vasoconstriction of coronary arte-
rioles in response to ET-1. 

ET-1 and Coronary Flow Regulation. Coronary blood flow is 
tightly coupled to the metabolic activity of the heart. Accu-
mulating evidence supports the concept that the ET-1 level in 
the heart contributes to metabolic regulation of coronary ar-
teriolar diameter and coronary blood flow. Administration of 
ET-1 receptor antagonists causes coronary vasodilation and 
increases coronary blood flow [76,78,94], suggesting the tonic 
regulation of coronary flow resistance by ET-1. A series of re-
cent studies proposed that cardiomyocytes play a key role in 
not only the production of vasodilators but also the vasocons-
trictor ET-1 [95-98]. This concept is based on evidence showing 
that α-adrenergic activation of cardiomyocytes causes ET-1-
dependent vasoconstriction of coronary arterioles in vivo and 
in vitro [95,97]. Administration of an ETA receptor antagonist 
or an ECE inhibitor prevented the constriction of coronary ar-
terioles in response to the α-adrenergic agonist phenylephrine 
[95]. These results suggest that the cardiomyocytes promote 
production and/or release of ET-1 since earlier in-vitro studies 
have shown that α-adrenergic agonists do not cause constric-
tion of coronary arterioles in vitro [97,99-101]. Recent studies 
have expanded this concept and demonstrated that phenyle-
phrine stimulation causes cardiomyocytes to release an uni-
dentified factor, which then induces ET-1 release from coronary 
arterioles [96,98]. Collectively, evidence from these integrative 
approaches surmise that regulation of coronary microvascular 
tone depends on tight control of the production and/or release 
of vasodilators and vasoconstrictors by the cardiomyocytes. It 
has been proposed that the α-adrenergic-induced production 
of ET-1 in the heart can contribute to increased basal coronary 
resistance to prevent excess perfusion in the subepicardium 
and may promote subendocardial perfusion [96].
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Interestingly, clinical studies have reported that abnormal ET-1 
levels in the plasma are associated with microvascular angina 
[102-105] (discussed further in the following section). The ele-
vated plasma levels of ET-1 in patients with essential hyperten-
sion [106] and the improved exercise-induced forearm blood 
flow in hypertensive subjects by ETA receptor blockade [107] 
imply altered regulation of metabolic flow control via ET-1 acti-
vation in the disease state. Moreover, a recent study has repor-
ted that ET-1 causes greater constriction of coronary arterioles 
in parallel with the elevated ETA receptor protein expression in 
patients with diabetes [108]. These observations highlight the 
importance of ET-1 activation in cardiovascular disease that 
may influence coronary microvascular tone under resting and 
increased metabolic states, which can potentially compromise 
myocardial perfusion and lead to impaired cardiac function.

ET-1 and ROCK Activation. In-vivo studies have shown that ad-
ministration of the Ca2+ chelator ethylenediaminetetraacetic 
acid [71] or Ca2+ channel blockers [109] reverses the sustained 
constriction of canine coronary arterioles in response to ET-1, 
suggesting the involvement of extracellular Ca2+ mobilization 
through voltage-gated Ca2+ channels. However, the specific 
signaling pathways downstream from Ca2+ for vasomotor re-
gulation remain to be determined. ROCK has been shown to 
be a possible signaling molecule modulating contractile myo-
filament sensitivity to Ca2+, thus regulating the force of smoo-
th muscle contraction [110]. However, it is unclear whether 
ET-1 also utilizes this signaling molecule, in addition to Ca2+ 
mobilization, in the coronary arterioles to exert its contractile 
action. We recently found that specific pharmacological bloc-
kade of ROCK with H-1152 and Y-27632 significantly reversed 
ET-1-induced constriction as well as inhibited myogenic basal 
tone of porcine coronary arterioles [56]. These results indicate 
the pivotal role of the ROCK pathway in evoking coronary arte-
riolar constriction and maintaining resting vascular tone. Since 
accumulating evidence suggests that ROCK activation is closely 
associated with numerous vascular diseases [5], it is speculated 
that enhanced ET-1 release during coronary disease develop-
ment may contribute not only to the increased basal tone (i.e., 
reduction in resting diameter) and enhanced vasoconstriction 
but also to the vascular pathology involved in structural chan-
ges (i.e., remodeling). Moreover, ET-1 induced constriction of 
human coronary arterioles has recently been shown to be sen-
sitive to protein kinase C inhibitors [74]. Future studies are ne-
cessary to understand the possible link between ROCK, protein 
kinase C and cytosolic Ca2+ in mediating coronary arteriolar 
constriction to ET-1. 

Cardiac Syndrome X, ET-1, and ROCK

Cardiac Syndrome X (CSX). CSX is a condition defined as the 
presence of angina-like chest pain and a positive response to 
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stress testing, but exhibiting normal or near-normal coronary 
arteries based on coronary angiography [111,112]. Accumula-
ting evidence has emerged showing that coronary microvas-
cular dysfunction is likely involved in CSX. However, rigorous 
definitions of the syndrome are elusive and the diagnostic 
criteria rely on “normal” coronary angiography. It is basically a 
diagnosis of exclusion because there is a lack of a standard way 
to precisely measure coronary microcirculatory function. This 
syndrome is predominant among females with onset of symp-
toms commonly between 40 and 50 years old, the age range of 
the menopausal transition [112]. Evidence obtained using the 
latest technology such as magnetic resonance, single-photon 
emission computed tomography and transthoracic color and 
pulsed-wave Doppler to study coronary blood flow supports the 
idea that coronary microvascular deficiency is a common factor 
among CSX patients [113-115]. In the following sections we will 
focus on the development of cardiac ischemia as a consequen-
ce of coronary microvascular dysregulation in association with 
elevated systemic/cardiac ET-1, endothelial dysfunction and 
ROCK activation as a possible mechanism for CSX. 

ET-1 and Myocardial Ischemia. As discussed above, ET-1 is the 
most potent endogenous vasoconstrictor to date that has been 
identified. Coronary arterioles appear to be the most sensiti-
ve vasculature in response to ET-1 stimulation (via abluminal 
site), with a threshold in the picomolar range [56,116]. This is in 
contrast with skeletal muscle [117,118], cerebral [119-122] and 
mesenteric [65,66,123] arterioles, which have thresholds at sub-
nanomolar to nanomolar concentrations. In addition, the EC50 
value for coronary arterioles is 10- to 100-fold lower than that of 
other vascular beds. It is worth noting that the extent of ET-1-in-
duced constriction in the coronary circulation is inversely rela-
ted to vessel size [71,124]. Therefore, it is reasonable to specula-
te that increased ET-1 level in systemic circulation might cause 
vasoconstriction primarily in the coronary microcirculation, and 
thus reduce local blood flow leading to myocardial ischemia. 
Several clinical studies support this view when examining the 
correlation between ET-1 level and CSX [102-105,125]. Eleva-
ted levels of ET-1 have been shown to be closely associated 
with reduced coronary vasomotor responses in patients with 
chest pain and normal coronary arteriograms [102]. Moreover, 
an increased circulating level of ET-1 has been reported to be 
associated with adverse clinical outcomes among myocardial 
infarction patients, including reduced survival rate [126-129]. 
The level of ET-1 released in acute myocardial infarction has 
been suggested to be an independent predictor of myocardial 
no-reflow, left ventricular function, and long-term mortality 
[126]. The apparent close association between elevated ET-1 
and myocardial ischemia supports the pathophysiological role 
of ET-1 in CSX.

Source of ET-1. The normal circulatory level of ET-1 in the peri-
pheral blood is about 1-3 pM (2-8 pg/ml) [103-105,125,130], and 
studies have demonstrated that plasma ET-1 levels rise in CSX 
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patients. If one closely examines the elevated level of ET-1 in 
CSX patients, it is noted that the ~2-fold increase in plasma ET-1 
is rather trivial [103-105,125] in terms of the extent sufficient to 
elicit a significant change in coronary arteriolar tone. Interestin-
gly, the arterial and coronary sinus ET-1 levels do not change 
significantly in CSX patients after pacing, despite a positive EKG 
change and lactate elevation being noted [102]. It appears that 
the myocardial ischemia is dissociated from the plasma level of 
ET-1. The population based Rancho Bernardo Study indicates 
that the ET-1 level is independently associated with coronary 
heart disease in female patients with median ET-1 values of 3.3 
and 3.1 pg/ml for diseased and healthy groups, respectively 
[131]. This small amount of ET-1 elevation, albeit statistically 
significant, makes it difficult to extrapolate its contribution to 
coronary arteriolar constriction leading to myocardial ischemia. 
It should be noted that there is no report on the incidence of 
angina when a 3- to 12-fold increase in arterial plasma ET-1 is 
achieved by systemic infusion of ET-1 in healthy human volun-
teers, despite the apparent inhibition of cardiac function (e.g., 
bradycardia, decreased stroke volume and cardiac output, and 
reduced left and right ventricular diastolic filling) [132-137]. 
However, patients with cardiovascular risk were not tested in 
those studies and it is unclear whether predisposing clinical 
factors are requisite to cause/enhance the ET-1 response. Mo-
reover it should be noted that the elevated plasma ET-1 might 
not lead to vasoconstriction since a preferential coronary arte-
riolar dilation was observed when ET-1 was infused intracoro-
nary at the level of 2-20 pmol/min [71]. Reduction of coronary 
blood flow (i.e., arteriolar constriction) was not observed until 
a high concentration of ET-1, 375 pmol/min, was infused [138]. 
In contrast, topical application (abluminal administration) of a 
low dose of ET-1 to the coronary arterioles consistently evoked 
vasoconstriction [56,71]. Therefore, a simple increase in circula-
tory ET-1 per se is unlikely to be sufficient or important for the 
initiation of an acute coronary event. Instead, the vasoconstric-
tor ET-1 is likely to be derived from a vascular and/or extravas-
cular source. 

Myocardial ET-1. It has been suggested that ET-1 is a local va-
sopressor hormone, rather than a circulating one [139]. Coro-
nary arteriolar expression of ET-1 is strongly associated with the 
regional environment, especially in relation to a1-adrenergic 
stimulation of the myocardium [98]. There are several reasons 
to believe that the local (myocardial and vascular) release of 
ET-1 plays a critical role in the regulation of coronary vascular 
function. ET-1 is mainly tissue-bound [140] and its level in the 
myocardial interstitium is about 3- to 6-fold higher than that 
in the plasma [141,142]. Significant compartmentalization of 
ET-1 exists within the human myocardium [141,142] and it can 
function in an autocrine and/or paracrine manner. Studies have 
shown that ET-1 is primarily released from endothelial cells 
toward the basal side, i.e., vascular smooth muscle, rather than 
into the apical lumen [137]. Moreover, ETA receptors are ex-
pressed on vascular smooth muscle and show strong affinity to 
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ET-1. Secreted ET-1 from the endothelium can quickly interact 
with the underlying smooth muscle cells instead of being relea-
sed to the circulation unless the “spillover” phenomenon from 
local tissue compartments occurs [142] or endothelial integrity 
is compromised [143-146]. 

As discussed above, cardiomyocytes are known to synthesize 
and secrete ET-1 [81] and it is this released ET-1 that appears 
to cause/facilitate coronary vasoconstriction induced by a-
adrenergic stimulation [98], although the release of ET-1 from 
the coronary vasculature cannot be excluded [96]. Moreover, 
the interstitial concentration of ET-1 in porcine myocardium as 
measured by a microdialysis probe is about 20 pM [142], which 
is within the range of threshold for coronary arteriolar constric-
tion in the same species [56]. Since coronary arterioles appear 
to be able to sense and respond readily to a small local eleva-
tion of abluminal ET-1, the focal vascular spasm or increase in 
vascular tone by ET-1 may contribute to local ischemia and CSX 
in patients with apparently normal coronary angiography. It is 
notable that coronary arteriolar constriction to ET-1 is generally 
suppressed by the functional endothelium [116]. Therefore, the 
elevated circulatory level of ET-1 may have a significant impact 
on the coronary microcirculation by promoting vasoconstric-
tion if the endothelial function is compromised under disease 
states [83,89]. Although it is less studied, the release of ET-1 
from fibroblasts for vasomotor regulation cannot be excluded. 
As the understanding of the physiology of ET-1 is extended, the 
pathological role of ET-1 appears ever more complex. The de-
trimental action of ET-1 as mentioned above cannot discount 
the growing evidence that ET-1 may contribute to tissue repair, 
such as inhibition of cardiomyocyte apoptosis via ETA receptor-
mediated calcineurin signaling [147-150]. Although it remains 
unclear whether ET-1 is cardioprotective in an actual disease 
state, with these new findings in mind the association between 
ET-1 and coronary microvascular function, as well as overall 
clinical outcomes, should be interpreted with caution. Further 
clinical and translational studies are needed to address these 
issues.

CSX and ROCK Inhibitors in Clinical Therapy. Numerous studies 
have suggested the involvement of cardiovascular risk factors 
including age, gender, cholesterol level, blood pressure, smo-
king status and diabetes in coronary dysfunction [151]. These 
factors are reportedly associated with ROCK signaling, and pos-
sibly associated with CSX through abnormal activation of ROCK 
in the coronary microcirculation. Although the technology for 
assessment of ROCK activity in the coronary microvasculature 
in vivo is not available at the present time, ROCK inhibitors [152-
161] have been employed to prevent coronary microvascular 
spasm and angina in patients with a microvascular type of myo-
cardial ischemia. 

Fasudil is the first ROCK inhibitor that has been approved for cli-
nical application in Japan and China and is used for preventing 
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secondary cerebral vasospasm and for protection from cerebral 
ischemia after stroke [162]. A phase II double-blind clinical trial 
in the U.S. has demonstrated the safety and efficacy of its use 
in patients with stable angina [154]. Fasudil treatment signifi-
cantly elevates coronary oxygenation, reduces lactate produc-
tion, and ameliorates pacing-induced myocardial ischemia in 
patients with effort angina without altering systemic hemody-
namics [153]. Fasudil also increases the ischemic threshold of 
angina patients during exercise [154]. These clinical studies pro-
vide support that abnormal ROCK activation is likely responsi-
ble for the myocardial ischemia elicited by microvascular spasm. 
Interestingly, in some cases, Fasudil surpasses the effect of ni-
troglycerin in relieving intractable severe coronary spasm after 
coronary artery bypass surgery, which fails to respond to con-
ventional vasodilators, including isosorbide dinitrate, diltiazem 
and nicorandil [156]. Fasudil is also used to treat other vascular 
diseases in clinical trials, including Raynaud’s syndrome (Clinical 
Trial Identifier: NCT00498615), atherosclerosis (NCT00120718) 
and carotid stenosis (NCT00670202). Another ATP-competitive 
type of ROCK inhibitor (SAR407899), with higher specificity and 
potency than Fasudil, has been shown to lower blood pressu-
re in various models of arterial hypertension in rodents [163] 
and is currently in a clinical trial for treating erectile dysfunction 
(NCT00914277). In addition to their inhibitory effect on vascular 
tone and ET-1-mediated vasoconstriction, ROCK inhibitors also 
have been shown to mitigate inflammatory insults [164,165], a 
biological action involved in almost all forms of cardiovascular 
disease. Although a significant interest has been generated in 
treating cardiovascular disease by ROCK inhibitors, it should be 
noted that most of these inhibitors are not at the optimal level 
of selectivity for different ROCK isoforms. Since ROCK isoforms 
play different roles in different biological processes, a selecti-
ve ROCK isoform inhibitor may be desirable for specific disease 
treatments. 

It is worth mentioning that statins, HMG-CoA reductase inhi-
bitors for cholesterol reduction, are widely used in the clinic 
and have been shown in large-scale clinical studies to exert 
protective effects in various cardiovascular diseases [166,167] 
by improving endothelial function, attenuating vascular and 
myocardial remodeling, and decreasing oxidative stress and 
inflammation [168,169]. Blockade of HMG-CoA reductase also 
decreases generation of mevalonate and subsequent synthe-
sis of isoprenoid intermediates, such as farnesyl pyrophospha-
te and geranylgeranyl pyrophosphate, which serve as sources 
for cholesterol production as well as lipid attachments for the 
post-translational modification of Rho [170,171]. Hence, statins 
are thought to exert the aforementioned pleiotropic effects 
beyond cholesterol lowering at least in part through inhibition 
of the RhoA/ROCK signaling pathway [169,172]. Recent studies 
have demonstrated that simvastatin dilates human [173] and 
porcine retinal arterioles [63] via an endothelium-dependent, 
nitric oxide-guanylyl cyclase pathway in part due to mevalo-
nate-ROCK inhibition [63]. High-dose statin monotherapy has 
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been shown to reduce ROCK activity in leukocytes and to res-
tore endothelium-dependent vasodilation in a recent clinical 
study [172]. The improvement of flow-mediated vasodilation 
and alleviation/elimination of stress-induced cardiac ischemia 
by statins in patients with CSX are also apparent [174,175]. The 
benefits from improved vascular endothelial function [172,174-
176] and the ability to mitigate adverse responses associated 
with abnormal ROCK activation [172,177-179] support the the-
rapeutic use of statins for CSX [174-176].

Conclusions 

The RhoA/ROCK pathway plays an important role in mediating 
various cellular functions. Activation of different ROCK isoforms 
appears to exert different biological functions and to have 
varying roles in disease development. ROCK2 appears to be dis-
tributed predominantly in the medial layer of the vasculature 
and plays an important role in maintaining resting vascular tone. 
In the coronary microcirculation, ET-1 activates vascular smooth 
muscle ETA receptors to evoke vasoconstriction through ROCK2 
activation involving Ca2+ mobilization and protein kinase C 
signaling. Elevation of the circulatory level of ET-1 is generally 
associated with coronary events and may contribute to myocar-
dial ischemia. However, experimental studies suggest that local 
vascular/myocardial sources of ET-1 may be the culprit in elici-
ting coronary arteriolar constriction. Abnormal activation of the 
ET-1/ROCK2 signaling pathway may contribute to local myocar-
dial ischemia and CSX. Although it may be disease-dependent, 
the factors triggering local release of ET-1 remain to be determi-
ned. Since abnormal RhoA/ROCK activation is closely associated 
with many cellular disorders, development of isoform-selective 
ROCK inhibitors will help future treatment of these disorders, 
including cardiovascular diseases. 
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