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Abstract

Computerized FHR features extraction and
Cardiotocograph (CTG) classification would support
obstetricians in CTG analysis and enhance their
interpretation. The main objective of this paper is to
develop a simple reliable algorithm for FHR feature
extraction and systematic CTG classification based on
MATLAB rule based functions and the Royal College of
Obstetricians and Gynecologists (RCOG) guideline. An
application was developed to extract the basic features of
FHR, such as: baseline, baseline variability, acceleration
and deceleration based on (RCOG) guideline. A
classification system using MATLAB was then introduced
to classify the CTG signal patterns into normal, suspicious
or pathological based on the RCOG guideline. The
computerized interpretations of 80 CTG signals were
compared with the visual interpretation by five
obstetricians. The obtained results show slight difference
of about ±2 beats per minutes (b.p.m.) and 5 b.p.m. for
variability. The algorithm and obstetricians were in
agreement on number and type of decelerations but
differed on the number of accelerations by up to (±4),
results in classifying CTG signals. These results are
considered promising for the use of computerised CTG
interpretation in the hospital as well as a component
homecare facilities for pregnant women.

Keywords: Cardiotocograph; Fetal heart rate; Uterine
contraction; Electronic featal monitoring

Introduction
Cardiotocography (CTG) is one of the common and

important methods for used for the assessment fetal well-
being during pregnancy and labour, assisting in the
identification of possible hazards to the fetus such as fetal
hypoxia and distress [1]. The long-term recording of the fetal
heart rate (FHR) is the most frequently used diagnostic
measurement to determine the fetal health status [2]. HR is

the measure of heartbeats per unit of time, typically expressed
as beats per minute (bpm) [3]. There are four methods to carry
out CTG measurements, namely ultrasound Doppler method,
electrocardiography (ECG), magnetocardiography (MCG) and
phonocardiography (PCG) [4]. Nowadays the widely used non-
invasive method for CTG is the ultrasound Doppler CTG [4,5].

CTG consists of a continuous recording of featal heart rate
and maternal uterine contractions (UC). CTG is the most
widely used tool for fetal surveillance. Changes in the FHR
pattern especially in relation to contractions can be classified
to indicate the fetal status. RCOG guideline is one of the
common guidelines used in the field of FHR monitoring to
support the obstetricians in making decisions on fetal
condition [6]. FHR monitoring is usually possible after the 24th
gestational week. The routine medical analysis of the recorded
FHR diagram is of great clinical importance and since its
introduction it has led to the drastic reduction of prenatal and
postnatal child mortality [7]. The visual analysis of FHR traces
largely depends on the expertise and experience of the
clinician involved. Several approaches have been proposed for
the effective interpretation of FHR [8]. Despite its widespread
use, there is still controversy about the efficacy of CTG,
reproducibility of its interpretation, and management
algorithms for abnormal or non-reassuring patterns [6]. Heart
rate variability (HRV) analysis is generally used for evaluating
autonomic nervous system (ANS) functioning in cardiovascular
research and in different human wellbeing related applications
[9].

Since 1970’s many researchers have employed different
methods to help doctors interpret the CTG trace patterns from
the field of signal processing and computer programming.
They have supported doctors’ interpretations in order to reach
a satisfactory level of reliability to act as a decision support
system in obstetrics. Up to the present, none of them has been
adopted worldwide for everyday practice [10,11].
Unfortunately, the fetal heart activity produces much less
acoustic energy and in addition it is surrounded by a highly
noisy environment. Therefore the detection of fetal heart
sounds raises serious signal processing issues [12-14]. The CTG
recording is noisy and the FHR trace may contain spiky
artifacts, spurious maternal HR and lots of missing values.
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These kinds of noise are always present in CTG recordings as
they cannot be eliminated at the source [15,16]. It is reported
that the missing data in the FHR record can amount to
20%-40% of total data [17]. It is said that most of the errors in
the interpretation of FHR are related to the quality of the data
acquired and presentation [18] as it is easy to mistake artifacts
for a fetal acceleration or deceleration. Alternatively, an
important fetal pattern may be mistaken as an artefact. These
could result in increase of false positives and negatives [19].
Conventional filtering techniques fail to provide a solution to
this problem and might eliminate important information from
the FHR signal. Therefore, it is necessary to have a different
pre-processing or signal enhancement stage in order to
remove these artifacts so that a representative set of features
can be extracted from the FHR. Researchers employed several
methods for processing the CTG signals, such as, linear
interpolation and moving average filters for eliminating the
missing beats and spiky artifacts [15,16,20,21]. After pre-

processing and the CTG pattern features are extracted, the
classification of FHR patterns is an important task and is
helpful in arriving at a diagnosis. This paper proposes
alternative simple algorithms for pre-processing, feature
extraction and classification of the CTG signals.

Methodology

CTG data sets description
Normally, the FHR patterns are categorized as reassuring,

non-reassuring and abnormal as in Table 1. Based on the
outcomes of this categorization FHR traces can be classified as
normal, suspicious or pathological as listed in Table 2.
Information on the different FHR patterns as shown in Figure
1.

Table 1 Categorization of FHR pattern.

Baseline Variability Deceleration Acceleration

Reassuring 110-160 b.p.m. ≥ 5 b.p.m. Non Present

Non-reassuring
100-109 b.p.m. 161-180
b.p.m.

≤ 5 b.p.m. for more than
40 minutes and less
than 90 minutes

Early deceleration Variable deceleration
Single prolong deceleration up to 3
minutes

The absences of acceleration with
an otherwise normal CTG is of
uncertain significant

Abnormal

<100 b.p.m. > 180 b.p.m.
Sinusoidal pattern for more
than 10 minutes

< 5 b.p.m. for more than
90 minutes

Late deceleration A typical variable
deceleration Single prolong deceleration
greater than 3 minutes

Table 2 Categorization (as normal, suspicious or pathological)
of FHR pattern.

Category Definition

Normal A CTG where all four features fall into the reassuring category

Suspiciou
s

A CTG whose features fall into one of the Non-reassuring
category and the remain of the reassuring category

Pathologic
al

A CTG whose features fall into two or more of the Non-
reassuring category or two or more into abnormal category

Figure 1 Characterization of patterns involved in CTG
analysis.

Three sets of CTG data signals were used in this research to
test the proposed algorithm. The first set of 15 CTG data of 30

minutes was collected from the Klinikum Rechts Der Isar, the
University Hospital of the Technical University of Munich, and
other hospitals in Germany, and this set of 15 CTG data were
adjusted (referred as semi-synthetic signals) to include all
baseline categories such as normal, bradycardia and
tachycardia baseline [22]. The second set consists of 30 CTG
signals derived from the first set (referred as synthetic signals).
The reason for the use of modified signals semi-synthetic (S1
to S15) and synthetic signals (S16- S45) is to cover all needed
features in CTG data such as acceleration, decelerations (late
and early deceleration) in some of the selected CTG signals.
The third set has 35 clinical data samples (S46- S80) collected
from PPUKM (The National University of Malaysia Medical
Center) by [23]. The three sets of CTG signals were handed
over to two groups of obstetricians, the first group has two
experts (Expert 1 and 2), and the second group has three
experts (Expert 3, 4 and 5). The obstetricians were asked to
estimate the CTG signals parameters: baseline, variability,
acceleration, deceleration and their opinion on CTG
classification. The obtained computerized results were
compared with the estimated results made by the two groups
of experts. CTG signals are noisy, containing spiky artifacts,
which occur when there are fetal movements or incorrect use
of the transducer in the process of monitoring and collecting
CTG data signals. The input signal has a missing sample and
the graph breakdown to zero (missing beats), the signal
condition stage used to remove the breakdown to zero by
using if statement through MATLAB source code. In the signal
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processing stage, the CTG signals are conditioned, by removing
spiky artefacts employing a procedure described by [22,24].
This method detects the first stable FHR segments, which are
defined as a segment where the difference between five
adjacent samples is less than 10 b.p.m. Whenever the
difference between five adjacent samples is found to be higher
than 25 b.p.m., a linear interpolation is applied between the
first of those two signals and the starting of new FHR stable
segment. The numbers of interpolated points are used to
measure the signal quality [19,21]. The number of values less
than 50 b.p.m., is counted to estimate the signal loss. Moving
average filter has been chosen in this study to enhance CTG
signals and in this section obtaining the ideal value for the
filter window size w is. From the figures obtained, the suitable
values for the window size are between 30 and 50. In this
research paper w=30 for the moving average filter has been
chosen by the experts where it gives the best visual
interpretation. Values of w beyond 50 distort the shape of CTG
data and the data may lose its important features such as
variability, accelerations and types and deceleration [21].

Removing spiky signals from the FHR and UC was achieved
by using moving average filter, thus eliminating most of the
high frequency noise that impairs contraction detection
[21,25]. The implementation of the moving average filter to
enhance the CTG dataset using MATLAB source code achieved
good results, which enabled the experts to interpret the CTG
datasets. The implemented algorithm removes unwanted spiky
signals and compensates for missing data which affect the
experts’ interpretation and extraction of CTG features.

FHR feature extraction
The techniques employed for the FHR and UC features

extractions are discussed. Feature extraction is considered to
be one of the important steps in CTG signal interpretation,
where all the important information related to the fetal
condition are extracted, based on which, categorization of the
CTG signal is made. Various types of features have been
extracted from the FHR signal such as time and frequency
domain and morphological features based on EFM guidelines
[3]. In this section, a methodology to extract FHR features and
CTG classification system based on RCOG guideline [26] are
described as shown in Figure 2. All algorithms for feature
extraction and classification have been developed and
implemented using the MATLAB source code and Excel file.
CTG morphological features like baseline, baseline variability,
acceleration and deceleration are the most important set of
features extracted from the FHR signals. These are the FHR
features which are analyzed visually by clinicians in order to
estimate and diagnose in everyday practice.

Baseline estimation method
Baseline is the most important feature of the FHR as all

other features depend on it. In the field of obstetrics, baseline
is an imaginary line that is drawn across the FHR tracing that
crosses more points in the FHR signal trace. According to the
literature, the computerized estimation of the baseline is a
complex process and up to date, there is no consensus on the

best methodology that produces the best baseline value [24].
Therefore, a new approach to calculate the baseline is
proposed and carefully developed, incorporating some of the
points given importance by obstetricians during visual analysis.
The procedure employed to calculate real baseline is shown in
Figure 3. In this work, a virtual imaginary baseline R is
assumed, which is equal to the mean value of the FHR signal of
30 minute segment as in:

Figure 2 Overall procedures for feature extraction and
classification system.

� = 1�∑� = 1� �(�)Where N is the number of samples and y
is the CTG signal.

This virtual baseline is the reference to calculate the true
baseline BL. This work is based on the MATLAB source code by
analyzing the limits of a virtual imaginary baseline of the FHR
signal and limiting minimum and maximum values of the input
FHR signal to be taken in the evaluation within certain time
periods according to the definitions of the RCOG guideline. The
first part of the measurement is based on finding the value of
R the mean of a 30 minute segment of the FHR signal as
explained in Figure 4 [25]. The second part of the

Health Science Journal

ISSN 1791-809X Vol.10 No.6:468

2016

© Copyright iMedPub 3



measurement is to determine the minimum (L) and maximum
(H) limits of the FHR signal as.

Figure 3 Baseline algorithm procedures.

Figure 4 FHR signal with the virtual baseline value R.

H = R + α (b.p.m.) ; L = R – α (b.p.m.)

Where α is the value in b.p.m., which is determined by
experiments as described in the following paragraphs. The
maximum and minimum limits are imposed so that any value
above H and below L is neglected. The remaining FHR signal
within the limits will be processed in the calculation of the real
baseline BL. From experiments using different values of α
starting from 1 to 15 b.p.m., added and subtracted from the
virtual baseline, the best value of α is selected. The obtained
results are compared with the experts’ opinions to find the
most accurate result of true baseline; Tables 3 and 4 shows
the obtained results of virtual baseline of five selected CTG
data.

Table 3 Baseline values for different values of α.

Signals

Values of α

α=5 α=6 α=7 α=8 α=9 α=10 α=11 α=12 α=13 α=14 α=15

S1 119 122 126 127 129 131 132 135 138 141 143

S4 119 122 124 122 125 125 127 129 129 132 138

S7 133 134 136 135 140 144 145 147 150 149 150

S11 137 139 140 139 141 142 143 143 146 147 150

S15 138 139 139 140 142 144 146 149 151 154 155

Table 4 Comparison of baseline values when α = 8 in table 3
with experts’ estimation.

Interpreted Baseline (b.p.m.)

Signals Expert 1 Expert 2
Research
work

This
work

S1 130 130 132 129

S4 120 120-125 125 124

S7 140 140 140 138

S11 140 140 138 141

S15 140 140 140 142

Krupa (2010)

The optimal value of α is 8 b.p.m., which gives the best
result and has an accuracy rate of 95% as shown in Figure 5.
The accuracy is calculated by comparing calculated real base
line value with the average base line of the experts. Figure 6
shows the limits of the FHR signal (H & L) from truncated FHR
signal (in red) [24,27].

Figure 7 shows the truncated FHR signal without
acceleration and deceleration changes. This processed FHR
signal may be used to calculate the real baseline according to
the RCOG definition [26]. The implemented algorithm
calculates the baseline value and classifies whether the BL is
reassuring, non-reassuring or abnormal. The decision is made
according to the RCOG guideline. The details are shown in
Table 1. Figure 8 shows FHR signal with real baseline BL.

Figure 5 Accuracy of new signal limitations, where α=1, 2,
3... 15.
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Figure 6 Algorithm limits.

Figure 7 Truncated FHR signal.

Figure 8 FHR signal & real baseline BL.

Acceleration identification method
The RCOG Guide line defines FHR acceleration as an

increase in the FHR by at least 15 b.p.m. from the base line
and is sustained at that level or higher for at least 15 seconds
as shown in Figure 9. According to the RCOG definition the
algorithm identifies all accelerations occurring in a 30 minute
FHR pattern recording. The procedure employed to identifies
the acceleration is shown in Figure 10.

Figure 9 Transient increases in the FHR representing
acceleration, when X and Y should be at least 15 seconds
and 15 b.p.m., or more respectively.

Figure 10 Acceleration determination algorithm.

In this method, the use of a moving average filter
smoothens the FHR signal to reduce the number of
intersection points between the FHR signal and the BL to the
limits without losing the original shape of the signal. In order
to calculate intersection points X1 and X2 as shown in Figure 9,
the algorithm implemented to detect the intersection points
X1 and X2 is based on the match between the (x, y) co-
ordinates of each FHR signal and real baseline points. Another
important factor which must be taken into account is the peak
of the acceleration period (Ymax) which is the distance in
b.p.m. between BL and the highest point of the FHR signal
within the period X1 to X2 The implemented algorithm is based
on a modified peak detector code built in the MATLAB source
code to calculate the maximum value (Ymax) of the FHR signal
within a specific time period X1 to X2 in seconds as explained in
Figure 10 and Figure 11. According to the RCOG definition of
acceleration (Xa and Ya) must be at least 15 b.p.m., and 15
seconds respectively.

Xa = X2 – X1 (Second);

Ya = Ymax – BL(b.p.m.)

Figure 11 FHR acceleration periods and intersection points
with baseline.
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The condition (Za) in Figure 10 is true if (Xa is greater or
equal to 15 seconds and Ya is greater or equal 15 b.p.m.) In the
identification algorithm for the acceleration transient period in
the FHR signal, all information data such as the length of (X
and Ymax) co-ordinates (position and magnitude) are saved for
further CTG classification.

Baseline variability estimation method
The procedure employed to calculate the baseline variability

is shown in Figure 12. This part of the algorithm calculates the
value of FHR variability V, based on the RCOG guideline
definition of baseline variability as shown in Table 1. Figure 13
shows the FHR signal variability in a two minute period. After
FHR acceleration occurs and for a period of two minutes, the
calculation of baseline variability is based on the calculation of
the maximum Ymax and minimum Ymin values of the FHR signal
in a two minutes segment after the intersection point between
the BL and FHR signal X2. Baseline variability V is calculated as.

V = Ymax-Ymin

Deceleration identification method
The deceleration pattern is recognized based on the RCOG

guideline [26,28,29] where it is defined as, “Transient episodes
of slowing of FHR below the baseline level of more than 15
b.p.m. and lasting 15 seconds or more". The procedure
employed to identify the decelerations is shown in Figure 14.
In addition to the recognition of deceleration patterns, the
algorithm distinguishes the deceleration types. The first type is
early decelerations; uniform, repetitive, periodic slowing of
FHR with the onset early in the contraction and which return
to the baseline at the end of the contraction.

Figure 12 FHR variability in a two minutes period
calculation.

Figure 13 Variability period.

Figure 14 Deceleration identification procedure.

The second type is late decelerations; uniform, repetitive,
periodic slowing of FHR with the onset mid to end of the
contraction and the nadir more than 20 seconds after the peak
of the contraction and ending after the contraction. In the
presence of anon-accelerative trace with a baseline variability
of less than 5 b.p.m., the definition would include
decelerations of less than 15 b.p.m. Figure 15 shows an
example of deceleration pattern. In the algorithm X3 and X4
represent the intersection points between the FHR signal and
BL. Another factor which must be taken into account is the
nadir (the lowest value of FHR signal) of the deceleration
period, Ymin. According to the RCOG definition of deceleration,
Y and X must be atleast 15 b.p.m. and 15 seconds respectively
as.
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Figure 15 FHR deceleration periods and intersection points
with baseline.

Xd = X4 – X3 (Second); Yd = fix(BL - Ymin) (b.p.m.)

The condition (Zd) in Figure 14 is true if (Xd and Yd) are at
least 15 second or more and 15 b.p.m., or more respectively.
All information about deceleration in the FHR signal, such as
number of decelerations and types of decelerations (Early or
Late) are extracted and saved for further classification of CTG
based on the RCOG guideline as shown in Table 1.

Uterine contraction estimation method
The other feature that must be taken into account is uterine

contractions (UC) as shown in Figure 16. The UC calculation
algorithm is used to find the number of UC occurring in a CTG
pattern and calculates the value of UCmax which represents the
reference point for calculating any type of deceleration,
whether it be late or early. The information about UC in the
CTG signal such as the number of UC and values of UCmax are
extracted and saved for further classification of the CTG based
on the RCOG guideline.

Figure 16 Uterine contractions.

The procedure employed to calculate the types of
decelerations is shown in Figure 17. To calculate the type of
deceleration, whether it is late or early, the value of the time
tYmin for deceleration Ymin and the value of time for uterine
contraction tUCmax of UCmax must be obtained first as shown in
Figure 18 (a and b).

Figure 17 Procedure for identification types of deceleration.

Figure 18 (a) Deceleration time, (b) UC time.

Figure 19 shows the time difference T in seconds between
the deceleration and UC in the CTG signal. T is the factor for
estimating the type of deceleration, whether it is early or late
according to the RCOG guideline. If T is greater than 10
seconds, then the deceleration is late deceleration and if T is
less than 10 seconds, the deceleration type is early
deceleration where.

T = tYmin - tUCmax

Figure 19 Time difference between deceleration & uterine
contraction.
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CTG classification algorithms
The implemented classification algorithm imports the FHR

features (baseline, baseline variability, acceleration and type of
deceleration) and UC information extracted previously into the
MATLAB rule based functions. According to the information
provided in Table 2 combined score of the FHR signal is
estimated. There are three conditions for CTG trace pattern
classification, condition (A) if all CTG features fall in the
reassuring category, condition (B) if all CTG features fall in the
Non-reassuring category and condition (C) if CTG features fall
the two or more of Non-reassuring category or one in
abnormal category. All procedure steps are illustrated in Figure
20. The proposed algorithm for the CTG Dataset classification
is based on MATLAB source code. The classification algorithm
implemented based on MATLAB source code relies on the
RCOG guideline classification sets as in Tables 1 and 2. The
algorithm classified the input data (baseline, baseline
variability, acceleration and deceleration) in the following sets:
If all inputs are in the reassuring category, then the CTG
classification is "Normal"; however, if one of the inputs is in
the Non-reassuring category and the remaining inputs are in
the reassuring category, then the CTG type is "Suspicious",
else, the CTG type is "Pathological". To ensure the validity of
the implemented classification algorithm, the second
algorithm was utilized to verify the results obtained.

Figure 20 Overall Classification procedure.

Validation techniques
Statistics is defined as a tool for creating new understanding

from a set of numbers. It has become an integral part of
biomedical research because of its ability to deal with data
collection, presentation, analysis and interpretation for the
purpose of drawing a conclusion. Statistics have been used in
this study at various levels, ranging from data representation
to validation. There are many statistical methods used to verify
the validity of the obtained classification results, which rely on
a comparison between the results and the interpretation of

experts in the field of biomedical signal processing. In this
work kappa statistics has been implemented.Generally known
as Cohen's kappa coefficient [25,26], it is a statistical measure
to evaluate the inter-rater agreement between two
classifications and claims to eliminate any agreement arrived
by chance. The kappa value can be estimated as.� = �(�)− �(�)1− �(�) where P(a) is the relative observed
agreement and P(e) is the hypothetical probability of chance
agreement, which are estimated from the relationship in
   . The interpretation of K value is done as shown in              .

Table 5 Interpretation of k value.

Value of k Strength of agreement

<0.20 Poor

0.21-0.40 Fair

0.41-0.60 Moderate

0.61-0.80 Good

0.81-1.00 Very good

Results and Discussion
In this section the results obtained from the morphological

feature extraction algorithms developed using conventional
programming techniques and the classification system based
on RCOG guideline are discussed. The results obtained from
the algorithms are compared with the visual interpretation
results of five experienced Obstetricians as it is considered a
gold standard in CTG interpretation. Baseline is the
fundamental feature of FHR signal and other features rely
completely on it, hence its algorithm validation is first
described. The effectiveness of the feature extraction methods
is discussed. Towards the end of the chapter the performance
of the classification system is evaluated.

Signal enhancement results
Moving average filter has been chosen to enhance CTG

signals and in this section obtaining the ideal value for the
filter window size w is obtained as in Figure 21. From the
figures obtained, the suitable values for the window size are
between 30 and 50. In this research w=30 for the moving
average filter has been chosen by the experts where it gives
the best visual interpretation. Values of w beyond 50 distort
the shape of CTG data and the data may lose its important
features such as variability, accelerations and types and
deceleration [22,29]. Removing spiky signals from the FHR and
UC wasachieved by using moving average filter, thus
eliminating most of the high frequency noise that impairs
contraction detection [18,22,30]. The implementation of the
moving average filter to enhance the CTG dataset using
MATLAB source code achieved good results, which enabled the
experts to interpret the CTG datasets. The implemented
algorithm removes unwanted spiky signals and compensates
for missing data which affect the experts’ interpretation and
extraction of CTG features. Figures 22a and b show a sample
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signal of the CTG data before and after removing unwanted
signals (noise).

Figure 21 (a) the noisy FHR signal, (b) the denoised FHR
signal with w=1, (c) w=5, (d) w=10, (e) w=20, (f) w=30, (g)
w=50, (h) w=100.

Figure 22 A sample of FHR and UC (a) before preprocessing,
(b) after preprocessing.

Baseline estimation results
For first set of signals, baseline is estimated by using the

proposed algorithm. The results obtained from the algorithm
are stored in excel file for further analysis. Results obtained for
first signal set are provided in Figure 23. The baseline results
shows a slight difference between the obtained results and the
results of the experts and researcher. The output results are all
different within (±2) b.p.m., and almost similar to the experts
estimated results.The second set of data signals S16-S45 are
used to test the algorithm. The same sample signals were
handed over to three different obstetricians (Expert 3, 4 and
5). Obstetricians were asked to estimate the FHR samples
baseline; the computerized results are compared with the
estimated results made by the three experts as shown in
Figure 24. The output results are all within (±3) b.p.m., and
almost similar to the experts estimated results, except signal
S20 and S25, where the two signals are irregular CTG signals.

Figure 23 Comparisons between the computerized
estimation of baseline and the experts’ estimation.

Figure 24 Computerized and visual estimation of Baseline
FHR results for Synthetic CTG signals.

The obtained results show the baseline of the 30 CTG signals
were all in the reassuring category (RCOG 2003) except signals
(S17, S19, S22, S23 and S31) were considered non-reassuring
and S35 where considered in abnormal category. The third set
of data which is the clinical signals was then used to test the
algorithm. The same sample signals were handed over to
(Experts 3, 4 and 5). Obstetricians were asked to estimate the
FHR samples baseline; the computerized results are compared
with the estimated results made by the three experts as
shown in Figure 25. The output results are almost similar to
the experts estimated results are all within (±4) b.p.m., except
signal S54 and S66.

Figure 25 Computerized and visual estimation of Baseline
FHR results for clinical CTG signals.

Variability estimation results
The baseline variability computerized results are compared

with the estimated results made by three experts on two sets
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of CTG data with the first set being S16-S45 and the results
shown in Figure 26.

Figure 26 Computerized and visual estimation of FHR
Baseline variability results for Semi-synthetic CTG signals.

The output results are all within (±5) b.p.m., and almost
similar to the experts estimated results except signal S25,
there is a difference between the presentation of each expert
estimated results due to the difference in their hospitals
system guidelines. The obtained results show the baseline
variability of the 30 CTG signals were all in reassuring category,
except signals S17, S20, S26 and S32 were considered non-
reassuring. The test on the third set S46-S80 has results as
shown in Figure 27. The output results are all within (±5)
b.p.m., difference and almost similar to the experts estimated
results except the estimation of the second expert which gives
higher range of variability estimation. All signals are in
reassuring category except signals S37, S40, S41, S43, S45, S47,
S49, S50, S51, S53, S59, S61, S63, S65, S66 and S68 are non-
reassuring. There is a difference between the presentations of
each expert estimated results due to the difference in their
hospitals system guidelines.

Figure 27 Computerized and visual estimation of FHR
Baseline variability results for Clinical CTG signals.

Acceleration identification results
The identification algorithm has been explained carefully in

the previous chapter, and in this section the output results for
detecting the number of accelerations are given. The
algorithm calculates number of acceleration occurring in 30
minute CTG pattern. Figure 28 shows the output results for 30
CTG samples synthetic signals (S16-S45). The obtained results
in Figure 28 shows the worst difference of (±4) compared with
the three expert estimated results. In this algorithm and
according to RCOG guideline, the most important aspect in
acceleration calculation is the presence or absence of

acceleration and the number of acceleration is not taken into
account. The clinical signals (S46-S80) are also used in the
algorithm to estimate the number of accelerations as shown in
Figure 29. The obtained results in the table show the worst
difference of (±6) compared with the three expert estimated
results. From Figure 28 and 29, in general all the output results
are similar to the three experts estimated number of
accelerations with difference of (1 or ±2) number of
accelerations. Due to the difference in experts experience and
adopted guidelines, there are some exceptions which result in
the worst cases.

Figure 28 Semi-synthetic signal number of acceleration
results.

Figure 29 Clinical signal number of acceleration results.

Deceleration identification results
The identification algorithm has been explained carefully in

the previous chapter, and in this section output results for
number and types of decelerations are given. The algorithm
calculates number of decelerations occurring in 30 minute CTG
pattern, and identify types of decelerations whether its early
(E) or late (L). Figure 30 shows the output results for S16-S45.
The second set of data is (S46-S80) is used in the algorithm to
estimate the number and types of decelerations as shown in
Figure 31. From the results obtained in Figures 30 and 31, all
the output results are similar to the experts estimated number
and type of decelerations. The results in both Figure 30 and 31
shows the same type of deceleration (Late & Early).
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Figure 30 Number of decelerations for Synthetic signal.

Figure 31 Number of deceleration results for clinical signal.

CTG classification results
The classification of CTG signal is implemented using fuzzy

logic tool box built in MATLAB. Figure 32 illustrates the
classification obtained results for S16-S45 synthetic CTG
signals, where N is normal, S is suspicious and P is
pathological.

Figure 32 CTG classification results for 30 Synthetic signals
using rule based approach.

The obtained results in Figure 33 show no significant
difference between the experts’ visual interpretation and the
algorithm classification results. Figure 32 illustrates the
classification obtained results for 35 clinical signals compared
with three obstetricians (expert) opinion. The obtained results
in Figures 32 and 33 show a slight difference in classification of
CTG signals between computer results and the three experts,

due to the differences in experts visual interpretation
experience and hospitals adopted guidelines.

Figure 33 CTG Classification results for 35 clinical signals
using fuzzy logic.

Statistical analysis of classified CTG data
The final step in this research is the statistical validation

between obtained CTG classification results and the three
obstetricians visual interpretation based on Kappas core. The
obtained results show a promising kappa value between the
implemented algorithm and the three experts visual
interpretation. Table 6 shows the statistical agreement.

Table 6 Degree of agreement of the classified results.

Table
Number
s

Agreement between
Obtained results
and Experts

Kappa
value Type of Agreement

4.1

Expert1 0.916 Almost perfect agreement

Expert 2 0.916 Almost perfect agreement

Expert 3 0.651 Substantial

4.11

Expert1 0.668 Substantial

Expert 2 0.587 Moderate

Expert 3 0.63 Substantial

4.12

Expert1 0.916 Almost perfect agreement

Expert 2 0.916 Almost perfect agreement

Expert 3 0.651 Substantial

4.13

Expert1 0.668 Substantial

Expert 2 0.587 Moderate

Expert 3 0.63 Substantial

Conclusion
In this paper different techniques for FHR features

extraction and classification have been developed along with a
new signal enhancement method for CTG signals. Firstly, in the
developed method morphological features were extracted and
classified based on RCOG guideline. The use of RCOG guideline
in the interpretation of FHR features brought in a systematic
and organized approach to CTG classification. Furthermore,
the effectiveness of this system evaluated by comparing the
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results with those of experts visual interpretation using
MATLAB source code showed satisfactory levels of
performance. It also proved that no significant difference
exists between the method and experts visual interpretation,
for the set of synthetic CTG signals and a slight difference for
the clinical CTG signals used for validation. Secondly, the new
CTG signals enhancement technique has been developed
involving an algorithm for compensating missing value
segments and removing high frequency noise. The
effectiveness of the method is measured with the help of a
comparative study on various signal enhancement methods
employed in the past and ratings obtained for the resulting
signals, based on the visual quality, from three obstetricians.

Finally, a method has been developed for the FHR feature
extraction and classification. The method involves extraction
of FHR features from the decomposed components of the FHR
signals and their classification using fuzzy logic tool box built in
MATLAB. The effectiveness of this method was evaluated by
determining the accuracy of prediction using the visual
classification results from three obstetricians as references. In
addition, statistical methods were employed to confirm the
accuracy of classification based on the visual interpretation of
three obstetricians, kappa values of 0.916, 0.916 and 0.651
and 0.668, 0.587 and 0.630 for the synthetic and clinical CTG
signals respectively.

Even though obtained results proved the viability of the
techniques developed an extensive validation on a larger data
set is required, in order for those to be employed in everyday
clinical practice.
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