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Abstract

Background: Mucormycosis is a severe disease that may
affect susceptible people following the intake or
inhalation of spores from fungi of the Mucorales order.

Objective: Research the ability of spores and yeasts of
Mucor polymorphosporus in activate the complement
system using human serum with or without chelators
(EGTA or EDTA).

Methods: Complement consumption assays, ELISA to
detect C3 and C4 fragments, MBL, CRP and IgG and
Immunofluorescence tests for C3 fragments were carried
out. Results: We found full complement consumption
when incubation occurred with EGTA-Mg2+ or without
chelators, suggesting that this activation was mainly
achieved by the alternative pathway. C3 and C4
fragments, MBL, CRP and IgG were present on both forms
tested. The amount of C4, MBL, CRP and IgG was almost
three folds higher on spores compared to yeast,
suggesting that while spores may trigger more than one
pathway of activation, yeasts exhibit mainly alternative
pathway activation. Immunofluorescence tests verified
the incidence of C3 fragments throughout the surface of
all samples, which were evenly distributed, suggesting
effective opsonization.

Conclusion: Complement system is part of innate
immunity, and its activation by the spores of Mucor sp.,
which can be present at the earlier stages of
mucormycosis, may prove to be essential for fungal
clearance from the host.

Keywords: Complement system; Fungi; Mucor
polymorphosporus; Spores; Yeasts; Zygomycetes

Introduction
Mucormycosis is a severe disease that may affect

susceptible people after intake [1] or inhalation [2] of spores
from fungi of the Mucorales order [3]. Usually, cutaneous,
pulmonary, rhinocerebral, gastrointestinal and disseminated
outcomes are common manifestations for the disease [4].
Diabetes and its acidosis, neutropenia, leukemia and
lymphoma have all been associated with the occurrence of this
disease, indicating that it is usually opportunistic in nature [5].
Spores from these fungi usually give place to hyphae which is
mainly responsible for tissue damage [6]. Even though that is
true, yeasts from the Mucorales order have been reported in
urine from a patient with bladder infection [7].

While Rhizopus sp. is accountable for the majority of
mucormycosis infections [3], a large number of cases were
reported with other species from the Mucor genus as the
causes of infection [8-11].

The complement system is a complex and extensively
regulated system, which contains both proteins that are
soluble or cell bound and that can be activated, producing
diverse outcomes such as: opsonization (C3b; C4b) and/or lysis
(C5b-C9) of vulnerable microbes [12]. The activation may be
triggered by three different pathways: one normally
dependent on antigen-antibody reactions, the classical
pathway; another initiated by spontaneous hydrolysis of the
C3 thioester bond, the alternative pathway; and the lectin
pathway, that uses Mannan Binding Lectin (MBL) or ficolins
which recognizes certain carbohydrate patterns on the surface
of microbes [13].

On a previous work [14], we displayed by ELISA the presence
of C3, C4, MBL and IgG on spores of M. circinelloides, M.
ramosissimus and M. plumbeus after complement activation.
All species tested presented similar results. Considering this
data, the major purpose of this work was to investigate if the
same would occur on M. polymorphosporus spores and yeasts.
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Materials and Methods
Fungal strain: Mucor polymorphosporus 1044 is a clinical

specimen from Colecao de Culturas of Micoteca University
Recife Mycologia (URM). URM is located at Universidade
Federal De Pernambuco (UFPE), Brazil. For the experiments
the fungus was cultured in plates containing Sabouraud-
dextrose medium for 5 days at room temperature. Spores
were harvested from the media in PBS pH 7.0. The fungus was
also cultured, in Sabouraud-dextrose containing plates, in 30%
CO2 atmosphere using GasPak jars for 48 hours at 37°C. Yeasts
were washed twice with PBS pH 7.0 Spore and yeast
concentrations were determined by counting in Neubauer
chamber [7, 15].

Complement source: A pool of Normal Human Serum (NHS)
was obtained after 10 ml of blood was drawn from each of our
coworkers [6], with their previous consent. The pool was
adsorbed three times, each time with a pellet of sheep
erythrocytes (109 cells ml-1 final concentration) for 30 minutes
at 4°C, to remove any possible reacting antibodies against
sheep erythrocytes. After centrifugation at the same
temperature, supernatant was collected, aliquoted and kept at
–80°C.

Hemolytic system: Sheep blood was drawn in Alsever’s
solution and then a sample was centrifuged (1400xg). The
supernatant was removed and the pellet was washed twice
with PBS pH 7.0. The pellet was then suspended in veronal
buffered saline (VBS - 0.1% gelatin, 5mM sodium Veronal, 142
mM NaCl pH 7.35) containing Ca2+ (1.5 × 10-4M) and Mg2+ (1 ×
10-3M) in order to contain 109 cells ml-1. To this suspension,
we added equal volume of rabbit anti-sheep erythrocytes
antibodies (Sigma Chemical Co. USA) diluted in VBS (1/3200),
as previously described by Lima & Silva [16]. The mixture was
incubated 30 minutes at 37°C. The suspension was then
adjusted to 5 × 108 cells ml-1 according to Mayer [17].

Complement activators: The following were used in
complement activation experiments: Spores and yeasts of M.
polymorphosporus; Zymosan A (Sigma Chemical Co. USA),
which was employed as the activation control of the
alternative pathway.

Complement activation: M. polymorphosporus spores (108

cells ml-1) and yeasts (107 cells ml-1) were incubated with
human adsorbed serum, treated or not with chelators (either
10 mM EDTA or 10 mM EGTA with 5 mM MgCl2) at 37°C for 60
minutes. The final dilution of the serum was 1/10 in VBS (with
chelators) or VBS with Ca2+ and Mg2+ (as described above).
Serum treated or not with chelators without activators was
used as negative control and 1 mg ml-1 of Zymosan was used
as positive control. After incubation, the samples were
centrifuged (1400xg) at 4°C. After activation, the sera were
diluted 1/5 in VBS with Ca2+ and Mg2+, making the final
dilution of the sera 1/50. The residual complement was
quantified in the resulting sera using the hemolytic system
[17]. Briefly, the antibody coated-sheep erythrocytes is placed
in contact with increasing volumes of this diluted serum (1/50)
[17], which allows complement activation by the classical
pathway, if there is still enough complement components in

the sera, after complement activation with our samples. The
amount of hemoglobin released was determined in a
spectrophotometer (Beckmann) at λ 540 nm. CH50 ml-1 was
calculated by von Krogh’s equation [17] and consumption
percentages were determined according to positive and
negative controls values.

ELISA: To assess complement fragments (C3, C4), CRP, IgG
and MBL deposited on the surface of samples, 96 wells
polystyrene plates (Corning, USA) were coated with 100 μL of
107 spores in PBS pH 7.0 or 106 yeasts in PBS pH 7.0 obtained
from complement activation (106 spores or 105 yeasts per
well). The plates were incubated for 1h/37°C and then
overnight at 4°C. After washing with PBS pH 7.0, blocking
buffer (2% BSA in PBS) was added and incubated for two hours
at 37°C. In order to detect C3 fragments, goat antihuman C3
antibody, diluted 1/3000 (Calbiochem. USA) was added. To
detect C4 fragments, rabbit antihuman C4, at 1/400 (DAKO-
immunoglobulins A/S. Denmark) was used. To detect IgG, goat
antihuman IgG, 1/5000 (Santa Cruz Biotechnology Inc. EUA).
For CRP, rabbit antihuman CRP, 1/50 (Santa Cruz Biotechnology
Inc. EUA) was included. For MBL, rabbit antihuman MBL, 1/50
(Santa Cruz Biotechnology Inc. EUA) was used. The plates were
incubated for 1h/37°C. After incubation, the plates were
washed 3 times with PBS pH 7.0. Secondary antibodies
conjugated with peroxidase were then added to react for 60
minutes at 37°C. The terminal complexes were detected after
incubation for 20 minutes with substrate solution pH 5.0 (4 μl
H2O2 and 4 μg OPD in 10 ml of 100 mM citric acid, 100 mM
NaH2PO4). The absorbance was measured at 490 nm (SLT-
Spectra, Austria) after the reaction was stopped with 2N H2SO4
[18]. C3 and C4 detection were assayed using fungi incubated
with serum treated or not with chelators, while IgG, CRP and
MBL only used fungi incubated with serum without chelators.
Non-activated samples, which had not been incubated with
serum, were used in all tests as negative controls.

Immunofluorescence assay: The pellets resultant from the
activation were washed 3 times each with PBS pH 7.0 and
resuspended in 1ml of the same buffer. 10 μL samples of the
fungi were distributed in immunofluorescence slides. After
heat fixation, the slides were treated with 10 μL of fluorescein
conjugated rabbit anti-human C3c (DAKO-immunoglobulins
A/S. Denmark), placed at 37°C for 1 hour and then washed
with PBS. Samples were counterstained with 0.1% Evan’s blue
dye [19], to suppress auto-fluorescence. The slides were
microscopically observed on an Axioplan 2 epi-fluorescence
microscope (Zeiss, Germany).

Statistical methods: Complement activation, ELISA and
immunofluorescence assays were repeated three times.
Complement consumption mean values were taken into
account for evaluation. Analysis of variance and two tailed two
sample t-test were applied to compare results from each test.

Results
Complement activation

The M. polymorphosporus forms were studied on their
capacity to activate the human complement system in vitro,
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using adsorbed human serum with or without chelators (EDTA
or EGTA). Chelator presence on the serum had the purpose of
checking the activation pathway utilized and potential
cleavage of components by Ca2+ and/or Mg2+ independent
enzymes of fungal origin [20]. The results can be observed in
Figure 1. When samples were incubated with EDTA, no
reduction in hemolytic activity was detected, while adding
EGTA-Mg2+, which elicits only the alternative pathway, or the
lack of any of these substances, which, in turn, permits all
pathways, confirmed full complement consumption. The
serum without the presence of any activating particle
(negative control) did not lose any hemolytic activity, even if
there was addition of chelators. Both forms examined
demonstrated the similar result pattern (p > 0.05).

Figure 1: Complement consumption percentage by spores
(108 spores per ml) and yeasts (107 spores per ml) of Mucor
polymorphosporus after activation with adsorbed serum
treated with or without chelators (EDTA or EGTA). Zymosan
(1 mg/ml) is used as positive control, while serum without
activating particles is used as negative control.

C3 and C4 fragments detection on fungal
surfaces

C3 and C4 fragments deposited onto samples subsequent to
activation, was assessed by ELISA. Both forms tested bound to
C3 fragments in a similar manner (Figure 2). The data indicates
efficient alternative pathway activation, since without
chelators, the results were only a little superior than with
EGTA-Mg2+ (p < 0.05). When comparing spore and yeast forms,
the results overall showed that a higher amount of C3 bound
to spores (p < 0.05) rather than yeasts (Fig. 2). C4 fragments
results were quite contrasting (p < 0.001) for both forms,
particularly when tested without any chelators (Figure 2),
which corroborates with complement activation by the
classical pathway. The amount of C4 which bound to spores
was over 2 folds higher than on yeasts. C3 results for zimosan
were higher than the other species evaluated (p < 0.001),
when testing occurred either with or without EGTA. Zymosan
displayed an inferior C4 deposition, when compared to the
spores, if incubation was done without chelators (p < 0.001).

Figure 2: Deposition of C3 and C4 fragments, MBL, IgG and
CRP onto spores and yeasts of M. polymorphosporus and
zymosan analyzed by ELISA. Antibodies against each
component were added and bound antibodies were
detected with a peroxidase conjugated secondary antibody.
Values are Optical Densities (OD) measured at 490 nm. The
OD values of the controls were subtracted from the values
shown.

IgG, CRP and MBL detection on fungal surfaces

The incidence of IgG, CRP and MBL on sample surfaces, after
activation, was also examined. IgG, CRP and MBL deposition
profiles were quite different for both forms tested (Figure 2).
The proteins tested were also found on yeasts, however their
levels were much lower (p < 0.001). This confirms the presence
of C4 fragments, which requires activation by classical or lectin
pathways.

MBL and IgG incidence on the positive control, zymosan,
were comparable to those examined on the spores (p > 0.05).
The results for CRP deposits on zymosan, though, were higher
than the spores (p < 0.001).

The incidence of C3 fragments on fungal
surfaces

The distribution of C3 fragments deposited onto the fungi
was examined with or without EGTA, which chelates Ca2+,
essential for classical pathway activation.

Direct fluorescence technique was employed to identify C3
fragments on both M. polymorphosporus spores and yeasts
(Figure 3). The tests demonstrated and uniformly fluorescence
spread on both forms when incubation occurred in the
presence or absence of EGTA-Mg2+. Being as counterstaining
with Evan’s blue dye, which represses auto-fluorescence and
non-specific antibodies, is accountable for this color spectrum,
the presence of EDTA inhibits all pathway activations and thus
its results show red fluorescence.
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While under light microscopy, the relative area of both
spore and yeast forms were measured. Fifteen samples of each
were used to render the result of 55.2 ± 6.36 μm2 for spores
and 621.26 ± 11.64 μm2 for yeasts.

Figure 3: Direct immunofluorescence of C3 fragments on M.
polymorphosporus using rabbit anti human C3c labeled with
fluorescein. A - Yeasts incubated with serum + EDTA. B -
Yeasts incubated with serum + EGTA-Mg2+. C – Yeasts
incubated with serum without chelators. D - Spores
incubated with serum + EDTA. E - Spores incubated with
serum + EGTA-Mg2+. F – Spores incubated with serum
without chelators. Red fluorescence is due to counterstain
with Evan’s blue dye, which suppresses auto-fluorescence
and unspecific antibody binding, indicating negative
antibody binding. White bar indicates 20 μm.

Discussion
The quantity of mucormycosis reports per year increases as

times passes and now ranks third in the most frequent invasive
mycosis charts [21]. After Rhizopus sp., Mucor species,
alongside Absidia sp. and Cunninghamella sp., are mainly
responsible for mucormycosis cases [3]. Our previous work has
shown that Mucor polymorphosporus mycelia (20 mg/ml) from
a clinical specimen could activate the complement system in
vitro, presenting close to 40% of complement consumption
[22].

Seeing as both forms had full complement consumption
when all pathways were liberated or when only the alternative
pathway was working, the logical indications is that the
alternative pathway in both cases was predominant. The
strong complement activation resultant from both spore and
yeast forms is corroborated by the intense fluorescence
observed after C3 was investigated on their surface. Several
fungi, for instance, Aspergillus fumigatus, Blastomyces
dermatitidis, Candida albicans and Cryptococcus neoformans
have the ability to activate the alternative pathway of the
complement system [12, 23]. Numerous phylogenetic papers
[24-26] state that alternative pathway components are
presumably the most primitive complement apparatus, which
is in agreement with the thought that countless organisms can
access the system by this path.

The cell concentration differences for yeast and spore forms
were due to their contrast in size. While spores have an
approximate area of 60 μm2, the yeasts are larger with 600
μm2, therefore an adjustment in concentration was necessary.
For that reason 108cells/ml was used for spores while 107

were used for yeasts. This similar surface area allowed the
ELISA data from both forms to be comparable. C3 deposition
onto yeast forms was lower than on spores (p < 0.001),
especially when all pathways were allowed. The higher C3
fragment deposition, when all pathways were working
together, was probably due to the participation, in some
degree, of classical and/or lectin pathways. C3 fragment
distribution onto spores and yeast were evenly displayed
throughout the entire fungal surfaces, suggesting a competent
opsonization of both forms. C3b/iC3b deposited subsequent to
complement activation, can be active opsonins, which can be
recognized by CR1 [27] and CR3 [28], respectively. Thus,
confirmation of deposited C3b is critical to validate an
successful complement response with opsonizing fragments,
that could likely direct to the phagocytosis of an intruding
microbe. Different papers have revealed that C3b and iC3b,
that are able to produce ester or amide bonds with microbial
surface structures [29], are detected on fungi after activation,
such as: Candida albicans [30], Aspergillus fumigatus [31],
Cryptococcus neoformans [32], Blastomyces dermatitidis [33],
and as a result, could assist binding to phagocytes.

C4 presence was also assayed by ELISA. It was evident that
C4 levels on yeasts were much lower than on spores,
indicating that there was little C4 participation on yeasts,
which normally is necessary for classical and/or lectin
pathways. This data was corroborated by the fact that MBL,
IgG and CRP levels were lower on yeasts when compared to
spores. Since differentiation from spores to hyphae undergoes
a yeast-like stage, this also suggest that as M.
polymorphosporus shifts to hyphae, complement dependent
removal of these cells is diminished. The presence of yeasts of
Mucor circinelloides in a patient with bladder infection,
although not related to the illness, showed that yeast-like form
from this genus is viable in humans [7].

Normally, C3 deposition is a lot quicker by classical than
alternative pathway [23], hinting that its usage would be more
effective. Alternatively, if the classical pathway is utilized, IgG
or IgM are habitually required [34] and, as a rule, adaptive
immunity is necessary in order to obtain these antibodies.
Since antibody synthesis takes some time, responses towards
the antigen would be delayed. Hence, complement activation
by the alternative pathway is decisive, as it directly influences
antigen presenting to phagocytes, inducing adaptive immunity
[27,28]. Recently, we perceived that mycelia from M.
polymorphosporus had higher complement consumption when
the whole set of pathways were available, contrary to
alternative pathway activation [22]. This means that mycelia
from M. polymorphosporus, and our tested samples, could
employ activation by the classical pathway. On a recent work
[6], immunohistological specimens from a patient with
mucormycosis revealed the presence of C1q, MBL, IgG and IgM
on hyphae of Mucor sp., confirming that Mucor species are
able to bind these proteins in vivo. No C3 or C4 fragment
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deposits were observed on the fungus, indicating inefficient
complement activation by hyphae or absence of surface
acceptors able to binds these proteins, which is in accordance
with our earlier work [22].

Besides permitting activation by the classical pathway, CRP
and IgG may also work as opsonins [34,35], being recognized
by certain receptors, as FcγR [36,37]. Total complement
consumption, could point to anaphylatoxin formation, which
would carry out chemoattractant function, attracting
neutrophils and dendritic cells [38,39]. Likewise, this could
indicate competent microbial elimination.

Given that MBL shows affinity towards mannose rich
carbohydrates [40], this would hint that the samples tested
may contain the same type of structure. It has been
demonstrated mannose residues on Mucor rouxii cell wall
composition [41]. Our earlier work probed for MBL on the
surface of M. polymorphosporus mycelia and could not
identify any occurrence after complement activation [22]. A
viable possibility is that there are structural differences
between mycelial and spore forms. These differences have
been acknowledged in M. rouxii [41].

On a previous study [14] we suggested that spores of an
array of Mucor species may have comparable complement
activation characteristics. As was reported, all species tested
presented the indistinctive complement responses. For the
spores of M. polymorphosporus the results were very similar,
including C3 and C4 fragments, MBL, CRP and IgG. This
indicates that spores from most Mucor species possess a
similar profile.

The complement system is a branch of innate immunity, and
activation by spores of Mucor sp., which may be present at the
beginning of the disease, significantly improves fungal
elimination from the patient. As the fungi progresses to
hyphae, complement activation becomes impaired, enhancing
the chance of developing the infection into mucormycosis,
especially in immunocompromised individuals.
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