16 (3) 2025 : 001-002 • Commentary

The metabolic impact of nonalcoholic fatty liver disease on cognitive dysfunction

Dekicho sivas

Department of Speech Language Pathology, Princeton University Princeton, United States

Non-alcoholic Fatty Liver Disease (NAFLD) has emerged as a significant health concern globally, affecting millions of individuals. While its primary association is with metabolic disturbances such as obesity, insulin resistance, and dyslipidemia, emerging evidence suggests a potential link between NAFLD and cognitive dysfunction. This article explores the metabolic mechanisms underlying NAFLD and its potential impact on cognitive function. Understanding these connections is crucial for developing comprehensive strategies for both the prevention and management of NAFLD-related cognitive impairment.

INTRODUCTION

Non-alcoholic Fatty Liver Disease (NAFLD) is a spectrum of liver conditions characterized by excessive fat accumulation in the liver, not caused by alcohol abuse. NAFLD encompasses a range of conditions, from simple steatosis to Non-alcoholic Steatohepatitis (NASH), fibrosis, and cirrhosis. The prevalence of NAFLD has risen dramatically in parallel with the global epidemic of obesity and metabolic syndrome.

Non-alcoholic Fatty Liver Disease (NAFLD) has emerged as a significant public health concern globally, paralleling the rise in obesity and metabolic syndrome. NAFLD encompasses a spectrum of liver conditions ranging from simple hepatic steatosis to Non-alcoholic Steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. Beyond its hepatic manifestations, NAFLD has been increasingly recognized for its extrahepatic effects, including its impact on cognitive function. In recent years, research has unveiled a complex interplay between NAFLD and cognitive dysfunction, shedding light on potential mechanisms and therapeutic implications. This article aims to explore the relationship between NAFLD and cognitive dysfunction, examining the underlying mechanisms, clinical implications, and avenues for future research [1-5].

Understanding non-alcoholic fatty liver disease

NAFLD is characterized by excessive fat accumulation in the liver in individuals without significant alcohol consumption. It is closely associated with metabolic risk factors such as obesity, insulin resistance, dyslipidemia, and hypertension. The prevalence of NAFLD has risen steadily in parallel with the global obesity epidemic, affecting approximately 25% of the worldwide population. While hepatic manifestations of NAFLD are well-documented, growing evidence suggests its involvement in systemic inflammation, cardiovascular disease, and neurocognitive impairment.

The link between NAFLD and cognitive dysfunction

Cognitive dysfunction refers to deficits in various cognitive domains, including memory, executive function, attention, and processing speed. Several observational studies and meta-analyses have reported an association between NAFLD and cognitive impairment independent of traditional risk factors. Individuals with NAFLD exhibit poorer performance in neuropsychological tests assessing memory, attention, and executive function compared to those without liver disease. Moreover, longitudinal studies have shown a higher risk of incident cognitive decline and dementia among NAFLD patients, highlighting the importance of

Address for correspondence:

Dekicho sivas

Department of Speech Language Pathology, Princeton University Princeton, United States:

E-mail: sivasdeki@gmail.com

Word count: 847 Tables: 00 Figures: 00 References: 10

Received: 22.07.2024, Manuscript No. IPJNN-24-15063; Editor assigned: 24.07.2024, PreQC No. IPJNN-24-15063 (PQ); Reviewed: 07.08.2024, QC No. IPJNN-24-15063; Revised: 13.06.2025, Manuscript No. IPJNN-24-15063 (R); Published: 20.06.2025

understanding this relationship [6-8].

Mechanisms underlying the association

The exact mechanisms linking NAFLD to cognitive dysfunction remain incompletely understood but likely involve multiple pathways. Chronic low-grade inflammation, oxidative stress, insulin resistance, and dyslipidemia, characteristic features of NAFLD, may contribute to neuroinflammation, blood-brain barrier dysfunction, and neuronal injury. Hepatic steatosis leads to the release of proinflammatory cytokines, adipokines, and free fatty acids into the systemic circulation, exerting systemic effects on the brain. Additionally, insulin resistance and dyslipidemia impair cerebrovascular function and neuronal insulin signaling, further exacerbating cognitive decline.

Implications for clinical practice

Given the bidirectional relationship between NAFLD and cognitive dysfunction, clinicians should consider assessing cognitive function in patients with NAFLD, especially those with additional risk factors such as obesity and metabolic syndrome. Early detection of cognitive impairment may prompt timely interventions to mitigate disease progression and improve patient outcomes. Lifestyle modifications, including weight loss, physical activity, and dietary changes, represent cornerstone strategies for managing both NAFLD and cognitive dysfunction. Pharmacological interventions targeting NAFLD-related inflammation and metabolic dysregulation may also hold promise in preserving cognitive function, although further research is needed to validate

their efficacy and safety in this context.

Future directions

Future research should focus on elucidating the precise mechanisms underlying the association between NAFLD and cognitive dysfunction, leveraging advanced neuroimaging techniques and biomarkers of neuronal injury and inflammation. Longitudinal studies are needed to assess the temporal relationship between NAFLD severity and cognitive decline and identify potential therapeutic targets for intervention. Additionally, randomized controlled trials evaluating the effects of lifestyle interventions and pharmacotherapy on cognitive outcomes in NAFLD patients are warranted. Collaborative efforts between hepatologists, neurologists, and cognitive scientists are essential to advance our understanding of this complex interplay and develop personalized strategies for preventing and managing cognitive impairment in NAFLD [9,10].

CONCLUSION

Nonalcoholic fatty liver disease represents more than just a hepatic disorder; it is intricately linked to systemic metabolic dysfunction, which can have profound implications for cognitive health. Recognizing and addressing this association is critical for comprehensive patient care and underscores the importance of multidisciplinary approaches in managing NAFLD and its complications.

- Estes C, Anstee QM, Arias-Loste, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J Hepatol. 2018; 69:896-904.
- George ES, Sood S, Daly RM, et al. Is there an association between nonalcoholic fatty liver disease and cognitive function? A systematic review. BMC Geriatr. 2022; 22:47.
- 3. Spiers J, Brindley JH, Li W, et al. What's new in non-alcoholic fatty liver disease? Frontline Gastroenterol. 2022; 13:102-108.
- Abeysekera KW, Fernandes GS, Hammerton G, et al. Prevalence of steatosis and fibrosis in young adults in the UK: a population-based study. Lancet Gastroenterol Hepatol. 2020; 5:295-305.
- Alexander M, Loomis AK, van der Lei J, et al. Risks and clinical predictors of cirrhosis and hepatocellular carcinoma diagnoses in adults with diagnosed NAFLD: real-world study of 18 million patients in four European cohorts. BMC Med. 2019; 17:1-9.

- Adams LA, Roberts SK, Strasser SI, et al. Nonalcoholic fatty liver disease burden: Australia, 2019–2030. J Gastroenterol Hepatol. 2020; 35:1628-1635.
- Trovato FM, Castrogiovanni P, Malatino L, et al. Nonalcoholic fatty liver disease (NAFLD) prevention: role of Mediterranean diet and physical activity. Hepatobiliary Surg Nutr. 2019; 8:167.
- Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004; 40:1387-1395.
- Hassani Zadeh S, Mansoori A, Hosseinzadeh M. Relationship between dietary patterns and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Gastroenterol Hepatol. 2021; 36:1470-1478.
- Kim D, Konyn P, Sandhu KK, et al. Metabolic dysfunction-associated fatty liver disease is associated with increased all-cause mortality in the United States. J Hepatol. 2021; 75:1284-1291.