

October 04-06, 2018 Moscow, Russia

Int J Drug Dev & Res 2018, Volume 10 DOI: 10.21767/0975-9344-C1-003 17<sup>th</sup> Edition of International Conference and Exhibition on

## Pharmaceutics and Novel Drug Delivery Systems

## Polyethyleneimine-folic acid modified mesoporous silica nanoparticles for the targeted delivery of curcumin and the anti-tumor efficacy in mice

## Nana Li, Zhi Wang, Yongtai Zhang, Kai Zhang, Jianxu Xie, Ying Liu, Wansi Li and Nianping Feng

Shanghai University of Traditional Chinese Medicine, PR China

**C**urcumin (CUR), a compound extracted from the rhizome of *C*urcuma longa, has shown anti-cancer activity. However, its clinical applications are limited by the low water solubility, poor chemical stability, and low oral bioavailability. In this study, we developed a Polyethyleneimine-folic acid modified mesoporous silica nanoparticles for the targeted delivery of curcumin and evaluated its therapeutic efficacy in mice. The mesoporous silica nanoparticles (MSNs) was modified with polyethyleneimine-folic acid (PEI-FA) and hyaluronan (HA), respectively. The capacity of the resultant nanocarriers (MSN-PEI-FA and MSN-HA) for CUR delivery was evaluated using breast cancer lines and a mouse xenograft model. The results indicated that both nanocarriers enhanced the drug cellular uptake, and MSN-PEI-FA showed higher targeting and accumulation in tumors than MSN-HA. The CUR-loaded MSN-PEI-FA nanoparticles exhibited greater antitumor efficacy than free CUR.

> npfeng@hotmail.com npfeng@shutcm.edu.cn