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Abstract

The study of human microbiome is widely perceived to be
a young biomedical discipline. Recent studies indicate an
association between human microbiome and chronic
disease conditions such as diabetes and obesity. An
understanding of human microbiome structure and
function is important for design and delivery of microbial
based therapies especially against immunological and
metabolic chronic diseases. In this review, we
demonstrate the role human microbiota in health and
disease in various anatomic sites and in development of
neonate immunity. In particular, the review focuses on
the role of placental microbiota in fetoplacental unit
receptivity and the effect of early microbiota exposure on
neonate immunity development. Additionaly, microbiota
impact on health and disease in the gut, lung and skin is
explored.
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Introduction
Dysbiosis refers to compositional and functional changes of

the microbiome and it can result into changes of all or any of
the following microbiome characteristics: Microbiome stability,
Microbiome diversity, and Microbiome resilience [1].
Microbiome stability also referred to as microbiome resistance
is the amenability of microbiota to perturbations. Microbiome
diversity refers to richness of the microbiota ecosystem.
Microbiome resilience is the ability of microbiota to get
restored to pre-perturbation state. Dysbiosis can be driven by
environmental and host related factors. However, variability of
microbiota among healthy individuals of different age,

geographical limits and dietary habits, limits the definition of
what actually constitutes the dysbiotic state. In view of this
limitation, [1] have defined dysbiosis as a microbial community
state that is not only statistically associated with disease, but
also functionally contributes to etiology, diagnosis, or
treatment of the disease.

Literature Review
Dysbiotic state can fall in either of the following categories:

(a) Decline of commensals which is either a reduction or
complete loss of microbiota and can be caused by either direct
killing of microbiota or attenuation of microbiota proliferation
[2]. Loss of commensals has been observed in Clostridium
difficile induced inflammation and restoration of the
diminished Clostridium scindens has been reported to
ameliorate the inflammatory condition [3]. (b) Dysbiosis can
also result from growth of commensal microbiota that has
potential to cause pathology; such commensals have been
referred to as pathobionts [4]. Studies report existence of
pathobionts at low relative abundance, but grow when there is
impairment of the microbial ecosystem. This type of dysbiosis
has been observed in the Entero bacteriaceae, whose bloom is
commonly observed in enteric inflammation [3]. (c) Loss of
microbiota species diversity within a site, known as decline in
alpha diversity, also constitutes dysbiosis and this type of
microbiota perturbation has been linked to metabolic health
[5]. Alpha diversity in the intestinal microbiota increases
during the first years of life and is a function of dietary
patterns [6]. Low intestinal bacterial diversity has been
documented in AIDS, Intestinal bowel disease and type 1
diabetes [7], and this has been attributed to abnormal dietary
composition [8].

Microbiota in pregnancy
The role of trophoblast cells in regulating immune activities

at the maternal-fetal interface is well documented.
Trophoblast cells can promote a tolerogenic phenotype, sense
and respond to pathogen associated molecular patterns
present in microorganisms, and that a breach of the
trophoblast immunity can cause pregnancy complications

iMedPub Journals
www.imedpub.com

DOI: 10.36648/1989-8436.11.2.106

Archives of Clinical Microbiology

ISSN 1989-8436
Vol.11 No.2:106

2020

© Copyright iMedPub | This article is available from: 10.36648/1989-8436.11.2.106 1

Review Article

http://www.imedpub.com/


including preterm birth [8,9]. Bacterial infections account for
more than 40 % of preterm birth cases [10]. Infectious bacteria
can access maternal-fetal interface by descending from
peritoneal cavity, from maternal circulation or by ascending
from the lower reproductive tract [11]. Research findings
indicate that bacterial infections at the maternal-fetal interface
weaken the trophoblast capacity to induce and promote fetal
acceptance and, instead upregulate trophoblastic
inflammatory immune reactions with subsequent fetal loss
[12]. Despite strong evidence linking bacterial infections to
pregnancy complications, antibiotic treatment has not proven
effective [13]. Recent studies demonstrate existence of
placental microbiota to play a critical role in success of
pregnancy [14]. Escherichia coli and other Proteo bacteria
family, have been shown to be abundant placental microbiome
[15,16]. It is now documented that placental microbiota
activities induce tolerogenic immunity, thereby permeating
receptability and preventing rejection of fetal-placental unit
[17]. Additionally, exposure of the fetus to maternal
microbiota during pregnancy can significantly affect
development of postnatal immunity in the neonate [18].
Maternal-fetal interface microbiota improves trophoblast
expression of IFN β. IFN β modulate maternal immune system
with increased maternal-fetal tolerance and receptivity [19].
IFN β belong to type 1 IFNs that trigger programmed cell death
in activated T-cells and increase production of
immunosuppressive molecules at the maternal-fetal interface
[20]. Viruses inhibit type 1 IFN pathway in the trophoblast.
Consequently, placental microbiota capability to induce an
immunosuppressive, tolerogenic trophoblast type 1 IFN
pathway can be abolished by viral infections [21]. Further, viral
infections shit placental microbiota milieu that has an
immune-tolerant setting to a pro-inflammatory state [22].

Neonate microbiota and disease development
Early life microbiota affects allergy development later in

child hood. Studies indicate low intestinal microbiota diversity
during the first month of life is associated with allergic
sensitization and asthma in children aged 6-7 years [23].
Colonization with Bifidobacterium breve is associated with
reduced risk of atopic dermatitis in the first year of life but
Bifidobacterium catenulatum colonization is linked to a higher
risk of atopic dermatitis [24]. In a Canadian study of infants,
low abundance of Faecalibacteria, Lachnospira, Veillonella and
Rothia genera at 3 months following parturition was
associated with higher risk of asthma and allergy development
[25]. In a study conducted in the US, infants with lower
abundance of species within Lactobacillus, Faecalibacteria,
Bifidobacterium and Akkermansia genera at 1 month of age
had a higher chance of getting asthmatic attack at the age of 4
years compared to those with higher abundance of the genera.
The authors of the study suggested that long-term
immunological consequences of the specific early life
microbiota profiles could be exerted through production of
distinct microbiota metabolites [26].

Skin microbiota
The skin surface is a lipid and protein rich cornified layer,

occasionally with invagination interruptions where follicles are
located. The skin surface and follicles are both physically and
chemically distinct [27,28]. The skin microbiota exhibits
specific site distribution patterns with Cutibacterium and
Staphylococcus predominantly residing in sebaceous areas
such the face and torso while Corynebacterium, beta
Proteobacteria and Staphylococcus dominating moist surfaces
such as the armpits [29]. This microbiota distribution pattern
indicates skin niche chemistry drives microbiome distribution
[29]. Skin microbiota assembly process begins during birth [30]
but the microbiota shifts notably during puberty, with
increased predominance of Corynebacterium and
Cutibacterium and a decline in abundance of Firmicutes [31].
However, in adulthood, skin microbiota remains stable over
time [32].

Skin microbiota modulate the expression of various innate
factors such as the components of complement [33] and
antimicrobial peptides (AMP) that are majorly in form of
cathelicidins and β-defensins. Cutibacterium stimulate
production of AMP in keratinocytes and sebocytes [34] while
Staphylococcus epidermidis have been demonstrated to
produce AMP [35,36]. Corynebacterium microbial members
constitute a major skin microbiota genus. Corynebacterium
and Mycobacteria genera share common microbiological
features such as similar surface and cellular structures. It is not
yet clear how the skin immune system distinguishes between
bacteria with such similar features [37]. Structurally,
Corynebacterium cell wall has lipoglycans termed lipomannas
and lipoarabinomannas both of which are ligands for the host
Toll-like-receptors and C-type lectins. The binding of the
ligands and receptors triggers a pro or anti-inflammatory
response depending on the immunological context in which
the ligand-receptor complex is sensed [38]). Recent studies
report microbe-microbe interactions to impact on human
health. The skin microbiota Corynebacterium accolens inhibits
growth of Streptococcus pnuemoniae, a common respiratory
tract pathogen [39]. This interaction is mediated by
corynebacterial lipase which hydrolyses triolein to release oleic
acid which in turn inhibits pneumococcal growth [39]. Skin
resident Staphylococcus epidermidis produce AMP that kill
Staphylococcus aureus and transplantation of Staphylococcus
epidermidis into the skin of patients with atopic dermatitis is
known to decrease colonization by Staphylococcus aureus [36].
Further, Staphylococcus epidermidis confer cutaneous immune
protection against infections by activating keratinocytes to
produce AMP [40]. Therefore, skin microbiota immune
protection goes beyond competitive exclusion.

Lung microbiota
Historically, the dogma that lung is a sterile organ has been

held, however, in the last decade, studies have demonstrated
new knowledge that the lung is not sterile and actually, the
organ harbors a diverse interacting microbiota [41,42].
However, there is dearth of information regarding the
potential role of lung microbiota in regulation of lung immune
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response and homeostasis. The lung is incessantly exposed to
microbiota either through inhalation or subclinical aspiration
from birth [43]. According to a study [44], the lung is exposed
to 7000 liters of diverse microbe rich air every day. The upper
respiratory tract where microbes are found in abundance is in
direct communication with the lung and sub clinical aspiration
of oropharyngeal microbial rich content occurs frequently in
humans [45,46]. The respiratory tract mucociliary system
ensures a constant level of microbe immigration and
elimination in the lung. Using a high-throughput sequencing of
amplicons of the 16s rRNA gene, a highly conserved locus in
the bacterial genome, a study [47] demonstrated that bacteria
in healthy airways were similar but distinct from airways of
asthma patients, who predominantly had Proteobacteria
phylum. The major bacterial phyla in healthy lung reported by
various studies are Bacteroidetes, and Firmicutes [47-49].
There is relatively low bacterial biomass in the human lung.
Human bronchoalveolar lavage studies have reported biomass
from 4.5 to 8.25 log copies/Ml [50,51]. Newborns acquire skin
microbiota that resembles their mothers ’  microbiome in a
manner that is specific to the method of delivery. Infants born
by vaginal route acquire skin bacterial communities resembling
mothers ’  vaginal microbiota dominated by Lactobacillus,
Sneathia or Prevotella, while those born by cesarean section
acquire microbiota resembling that of mothers ’  skin
microbiota composed of Corynebacterium, Cutibacterium and
Staphylococcus species [52]. However, studies that have
examined the dynamic changes that may occur in the lower
respiratory tract microbiota during pregnancy and as
childhood progresses are scarce. In the lungs, conditions that
affect bacterial proliferation include oxygen tension, local pH,
epithelial cells structure, blood flow and effector inflammatory
cell profile [53,54]. Further chronic lung diseases may
considerably alter microbial community through elevated
volumes of micro aspiration achieved by cough and
mucociliary clearance [55]. A study [56], for instance, reported
increase in abundance of Prevotella and Veillonella in
lymphocyte and neutrophil mediated lung inflammation.
Chronic lung diseases are characterized by interludes of acute
exacerbations marked by decline in pulmonary function and
worsening pulmonary symptoms. Such exacerbations are the
main cause of morbidity and mortality. Chronic lung disease
exacerbations are indicative of disease progression and many
patients fail to restore to their pre-perturbation functional and
physiological state, a situation that has been associated with
lung microbiota dysbiosis [57]. There is, for example, a decline
in abundance of lung Bacteroidetes in asthmatic airways [47].
In another study, lung Proteobacteria were the predominant
microbiota found during bronchial hyper-responsiveness [58].
Additionally, host microbiome interaction has been reported
as a critical aspect of asthma development. Children born with
broad lung microbial exposures were reported to be protected
from asthma and atopy [58]. Further, an association between a
higher fiber diet and reduced risk of asthma has been
demonstrated [59].

Gut microbiota
The human gut harbors an estimated 1000 bacterial species

and that, gut microbiota dysbiosis has been associated with
multifactorial disease conditions such as inflammatory bowel
disease, obesity and type 2 diabetes interlia [60]. The gut
microbiota of a healthy human confers a number of health
benefits including pathogen protection, immune modulation
and nutrition [61]. Following birth, the neonate gut is rapidly
colonized by microbiota and this has been reported to depend
on mode of delivery, feeding type and use of antibiotics [62].
Early gut microbial members include enterobacter and
enterococci followed by anaerobic Bifidobacteria, clostridia,
and Bacteroides species [63]. In the adult gut microbiota, the
predominant bacterial phyla reported are Firmicutes and
Bacteroidetes. Other phyla present in low abundance include
Actinobacteria, Proteobacteria, Fusobacteria and
Verrucomicroba [64]. The butyrate producing bacteria
Faecalibacterium, Roseburia and Bacteroides have also been
identified in a healthy human gut microbiota [65]. It has been
documented that there is age related alterations in the gut
microbiota of elderly people. In a study of people aged over 65
years, the predominant gut microbiota was found to be
Bacteroidetes and this was associated with the low grade
inflammation, otherwise referred inflammaging, of the
gastrointestinal tract in the elderly [66]. A number of diseases
have been linked with gut dysbiotic state. In inflammatory
bowel disease which is characterized by chronic and relapsing
inflammation of the intestinal tract, gut dysbiosis has been
associated with the development of mucosal lesions [67].
Lower abundance of the Bacteroidetes and Firmicutes phyla
has been reported in intestinal bowel disease [68].
Additionally, the gut microbiota Roseburia needed for butyrate
production and the Phascolarcto bacterium needed for
succinate production are significantly low in intestinal bowel
disease [69]. Several studies suggest a role of gut microbiota in
the pathogenesis of colorectal cancer [70,71]. It has been
reported that abundance of Fusobacteria to increase in
colorectal cancer tumors compared to control samples [71]. In
particular, Fusobacterium nuclaetum, Fusobacterium
necrophorum and Fusobacterium mortiferum were enriched in
tumor tissue but there was decline in proportions of
Firmicutes and Bacteroidetes [71]. It is thought that
Fusobacterium contribute to colorectal cancer pathogenesis by
eliciting tumor inflammation [72]. Irritable bowel syndrome,
marked by abdominal pain and altered bowel habits, gut
dysbiosis has been associated with the disease low grade-
intestinal inflammation [73]. Further, gut dysbiotic state has
been suggested to facilitate pathogen adhesion in irritable
bowel syndrome [74]. In irritable bowel syndrome, there is
considerable increase in abundance of Firmicutes,
Ruminococcus, Clostridium, and Dorea and a decline in
proportions of Bifidobacterium and Faecalibacterium species
[75]. There is paucity of information regarding association
between gut microbiota and obesity. However, a study [60]
established a decrease in the ratio of Firmicutes to
Bacteroidetes following weight loss in human subjects. In
another study, a lower proportion of Bacteroidetes in obese
individuals but increased abundance of Actinobacteria with a
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fairly stable proportion of Firmicutes was reported. In type 2
diabetes, which is principally linked with obesity related insulin
resistance, there is low proportion of Firmicutes but a higher
proportion of Bacteroidetes compared to normal controls.
Further, type 2 diabetes patients have a gut dysbiosis with a
higher proportion of opportunistic pathogens such as
Clostridium species but a lower proportion of butyrate
producing bacteria [65].

Conclusion
The human microbiome plays a critical role in human health

and disease. Resident microbiota in different anatomic sites of
human body influence metabolism, physiology and modulate
immune system development. Perturbation of microbiota is
associated with several multifactorial disease conditions and
this is fundamental in development of appropriate therapeutic
approaches. Targeting of specific constituents of microbiota
may potentially permeate removal of harmful microorganisms
and or their metabolites and enrichment of beneficial
microbes.
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