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Abstract

Glioblastoma multiforme (GBM) is the most common and
lethal primary glial neoplasm. GBM can develop both “de
novo” or evolve from a previous astrocytoma, being
characterized by high proliferation and infiltration into the
surrounding tissue. This invasive behavior is the most
contributing factor for the poor prognosis of this cancer,
despite the multimodal treatment with surgery,
radiotherapy and chemotherapy. Understanding and
targeting the molecular mechanisms regulating glioma
invasion and progression may help in identifying novel
therapeutic targets for GBM treatment. This review will
give an overview of some of the signaling pathways that
have been shown to positively and negatively regulate
GBM invasion, including the Wnt, PI3K/Akt, sonic
hedgehog-GLI1 and microRNAs.

Keywords: GBM; Hedgehog pathway; Wnt pathway; micro
RNA

Introduction
Glioblastoma Multiforme (GBM) is the most aggressive

primary glial neoplasm [1]. Because of its high potential for
infiltration and invasion, local control of GBM is difficult with
either surgery or radiation therapy. Surgical excisions as wide
as hemispherectomy have failed to prevent tumor recurrence
or improve survival [2,3]. Understanding and targeting of the
invasion pathways has therefore, been focus of numerous
experiments and pathological studies.

Invasive pathways involve complex interactions among
cancer cells, extracellular matrix and white matter. These
interactions are regulated by over 140 genes [4]. Multiple
regulatory pathways including PI3K/Akt, Wnt, Sonic hedgehog
and micro RNAs are implicated in the invasive properties of
glioma cells [5]. There is significant genetic and phenotypic
heterogeneity within the GBM [6-8]. Different subtypes of
GBM such as pro neural (PN), neural, mesenchymal and classic
also differ in their different genetic profile [9,10].
Understanding of invasive pathways and their heterogeneity is

therefore important for targeting infiltrative potential of GBM.
Our understanding of these pathways is, however, still
incomplete.

The objective of this article was to review recent literature
and provide an update on the basic mechanisms of local
invasion of human GBM cells.

Literature Review

Scherer’s structures to the current
understanding of invasion

Scherer, a German neuropathologist studied serial sections
of the brain from 100 patients and concluded that glioma
spreads along structures which he named “secondary
structures” in 1938 [11]. These secondary structures, now
called Scherer’s structures included brain parenchyma, pre-
existing blood vessels, white matter tracts and the
subarachnoid space [11]. Another important observation that
Scherer reported was that the invading cells do not have a
single shape or form [11]. Rather, the shape of glioma cells
varies according to the pathway they follow - this observation
being consistent with the more recent hydrodynamic theory of
invasion [12].

Migration of glioma cells mimics cellular migration during
embryogenesis [12]. It starts with morphological polarization
and development of membrane protrusions [5]. Glioma cells
thus attach with the extracellular matrix (ECM) and pull
themselves forward. The interaction of glioma cells with ECM
is also chemical [5,13]. Several studies have shown tumor cells
to influence stromal cells, altering the composition of the ECM
[13]. Migratory cells undergo changes in volume and shape to
allow movement through different spaces. The process is
regulated by several growth factors, chemokines and cell-
extracellular matrix interactions. Degradation of the physical
barrier of ECM by metalloproteinases (MMP) is essential for
the migratory process. MMPs are shown to have a higher
expression in glioma cells compared to their normal
counterparts [5]. Several other enzymes including plasmin,
cathepsin B, cathepsin D and heparanase help glioma cells
evade ECM [14]. It has been shown that GBM cells
demonstrate both mesenchymal migrations predominantly
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through Rac1 activation and amoeboid migration through
Rho/Rhzo kinase (ROCK) activation [4,15,16].

GBM stem cells and invasive properties
GBM stem cells are a subpopulation of GBM cells that

acquire the properties of a stem cell. These stem cell
properties are important for their potential to infiltrate, recur
and develop resistance to various therapeutic agents [17].
Stem cells in glioma are called glioma stem cells (GSCs) or
glioma initiating cells (GICs). GSCs can be identified through
their cell surface markers-CD 133 and Nestin [5]. Some GSCs
can however, be CD133 negative [17,18]. GSCs capability of
producing neurospheres in serum free culture conditions, self-
renewal and multipotency [19], contribute to their
invasiveness of GBM and have attracted interest of scientists
and pathologists for decades.

Glutamate promotes invasion
Glutamate acts in an autocrine and paracrine fashion to

produces oscillatory Ca++ intracellular changes [12]. These
changes are brought through Ca++-permeable AMPA receptors
and promote invasion of glioma cells.

Wnt signaling pathway
Wingless/Int1 signaling pathways are involved in

embryogenesis, tissue repair and cell self-renewal in adults
[20]. Their mutations are implicated in several cancers
including colon, breast, leukemias and GBM [20,21]. Wnt
ligands Wnt1, Wnt 2, Wnt3a and Wnt5a are overexpressed in
gliomas [22-24]. In mice, the knockdown of Wnt1 causes
development of non-invasive small glial tumors while the

knockdown of Wnt3 completely prevented the tumor
formation [22]. And in vitro knockdown of Wnt5, suppresses
MMP-2 and GBM invasion [23].

The three Wnt pathways are canonical Wnt/β-catenin
dependent pathway, non-canonical dependent planar cell
polarity pathway and the Wnt/Ca++ pathway. Of these three
pathways, β-catenin dependent pathway is the most studied
cascade [4,5,20].

β–catenin dependent pathway (Figure 1A) [25] starts when
Wnt ligands bind with their seven-transmembrane cell surface
receptor, called Frizzled (Fz). On binding Wnt factors, Fz
interacts with its co-receptor low-density-lipoprotein-related
protein 5/6 (LRP5/6), forming a complex that recruits the
cytoplasmic scaffolding protein Dishevelled (Ds). The complex
translocates to nucleus to interact with T-cell factor (TCF)/
lymphoid enhancer factor (LEF) transcription factors to
regulate the expression of target genes. These target genes
include c-Myc, cyclin D1, and MMPs [21,26]. C-Myc and cyclin
D are involved in cellular proliferation while MMPs increase
the invasive potential of glioma cells. Wnt factors that are
known to activate this β-catenin dependent pathway are
Wnt1, Wnt 3a and Wnt 7a [23]. β-catenin is overexpressed in
glioma and its knockdown in vitro reduces invasiveness of
GBM cells [24] (Figure 1).

In non-canonical dependent (Figure 1B) [25] PCP pathway,
Wnt signaling at Fz activates a mitogen activated protein
kinase called Jun-N-terminal kinase. In Wnt/Ca++ pathway,
various Wnt and Fz homologs activate calcium/calmodulin-
dependent kinase II and protein kinase C [27]. These pathways
have shown to be upregulated in GBM and are activated by
Wnt2, Wnt4, Wnt5a, Wnt5b, Wnt6 and Wnt11 [23].

Figure 1 WNT pathways.

β-catenin degradation pathway
In the absence of Wnt signals, β –catenin binds with

glycogen synthase kinase-3β (GSK-β) [21]. GSK-3β causes
phosphorylation of β-catenin, which is then taken up by

proteasome for degradation [16]. Several factors influence this
pathway. EGFR trans-activates β-catenin by disrupting its
association with α-catenin [28]. FRAT-1 prevents degradation
of β-catenin by inhibiting GSK- β, thus upregulating GBM
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invasion and growth in vivo [29]. While, knockdown of Lef-1, a
transcription factor inhibits GBM invasion in vitro [30].

PI3/Akt signaling pathway
PI3/Akt signaling pathway is implicated in up to 63% of

grade III and IV tumors of the brain with an alteration in one of
the four genes that form this pathway - epidermal growth
factor receptor (EGFR), PTEN, PIK3R1 and PIK3CA [30]. The
activation of PI3K pathway factors is associated with reduced
survival [31], more aggressive behavior and treatment
resistance [30]. PI3/Akt/mTOR pathway (Figure 2) [32] is
activated by several growth factors like epithelial growth factor
(EGF) and transforming growth factor-α (TGF-α). These factors
upon binding receptors such as EGFR [32], gets
homodimerized or heterdimerized, resulting in
phosphorylation of its intracellular tyrosine kinase domain
[33].

Figure 2 PI3/Akt/mTOR pathway.

Out of the three classes of PI3K, class I being the most vital
to tumorigenesis, consists of a catalytic subunit p110 (α, β, γ)
and a regulator subunit p85 [pI3oncotarget]. Upon activation
phosphorylated tyrosine of EFGR binds to p85. The subsequent
conformation change releases the catalytic subunit p110 [32].
The activated p110 phosphorylates the phosphatidy-
linositol-3, 4-bisphosphate (PIP2) into the second messenger
phosphatidylinositol-3, 4, 5-bisphosphate (PIP3) [15]. This
reaction is reversed by the PI3K antagonist PTEN [34].
Subsequently, PIP3 will recruit the downstream Akt to inner
membranes and phosphorylates Akt on its serine/threonine
kinase sites (Thr308 and Ser473) [35,36]. Activated Akt
phosphorylates several other proteins like GSK3β which
stabilizes β-catenin [14] (Figure 2).

PI3/Akt increases MMP-2 and MMP-3 activity, especially in
the peripheral cells enabling them to invade normal brain
parenchyma [37]. PTEN on the other hand, suppresses MMP-2
and thus GBM invasion [34]. EGFR and PTEN mutation have
been shown to cause continuous activation of PI3K/Akt/mTOR

signaling pathway, thereby contributing to the tumorigenesis
[32].

In PI3/Akt pathway, mTOR is an effector as well as upstream
regulator [38,39]. mTOR resides in rapamycin-sensitive mTOR-
complex (mTORC1) and a rapamycin-insensitive complex
(mTORC2) [40,41]. mTORC2 phosphorylates Akt at Ser-473,
taking part in metabolism, survival, proliferation and
cytoskeletal reorganization of cells. Activated Akt inhibits
tuberous sclerosis complex (TCS1/2), which in turn activates
mTORC1. mTORC1 participates in protein translation,
ribosomal biogenesis and cell growth [42,43].

Hedgehog-GLI1 pathway
Hedgehog pathways are critical to embryogenesis and

tumorigenesis. Three types of ligands can activate hedgehog
pathway i.e., sonic hedgehog (Shh), Indian hedgehog (ihh), and
Desert hedgehog (Dhh) [44]. The receptor is a 12-
transmembrane receptor Patched (PTCH). Binding ligand with
the receptor abrogates another 7-transmembrane receptor
protein called Smoothened (SMO) [44]. This pathway is shown
in Figure 3 [45]. SMO prevents degradation of GLI1 which
localizes to nucleus and upregulates several genes GLI1,
PTCH1, cyclin D, Bcl-2 and VEGF [46,47]. GLI1 is also activated
by other pathways like PI3/Akt and MEK. These pathways are
activated by receptors tyrosine kinases like EGFR and PDGFR
[48].

Figure 3 Sonic Hedgehog pathway.

GLI family includes GLI1, GLI2, and GLI3 transcription
factors. These factors act as effectors of Shh pathway. Another
isoform of GLI1 called tGLI1 has been implicated in the invasive
properties of GBM and breast cancers [49-52]. tGLI variant has
not been detected in normal brain cells but is expressed in
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most GBM specimens [51,52]. tGLI has also been shown to
upregulate the expression of VEGF-A and heparanase [52]. This
leads to increased vascularity of GBM compared to the normal
GLI variants [51]. Several studies have supported these
observations [49-51]. Because of the lack of its expression in
malignant cells, GLI can be an excellent target for therapeutic
drugs (Figure 3).

The role of microRNAs
MicroRNAs (miRNA) are 20-25 nucleotide long, non-

encoding RNA molecules that regulate the expression of more
than 2/3rd of genes involved in stem cell related pathways [5].
They play an important role in the tumorigenesis and have
been the focus of extensive research over the past decade.
miRNAs bind to 3’untranslated regions (3’-UTRS), suppressing
the translation of messenger RNA (mRNA) or inducing
degradation of mRNA [38], affecting cell differentiation,
proliferation and metabolism. Some of the miRNAs associated
with invasion are discussed.

miR-218: miR-218 is significantly downregulated in GBM
and correlates negatively with tumor grade [26,53,54]. It acts
by downregulating Lef1, which is involved in the upregulation
of β-catenin pathway. Lef1 downregulation cases reduction of
MMP-2, MMP-7 and MMP-9, which inhibits cell invasion in
vitro [26]. miR-218 also downregulates iKKβ mRNA and NF-kB
[53]. NF-kB is involved in cellular invasion, increasing MMP-9
[5]. Other targets of miR-218 include GLI1, which is known to
increase invasion of tumor cells [51,54,55].

miR-101: miR-101 is a tumor suppressor which is
downregulated in GBM [56-58]. It acts on Kruppel-like factor 6
(KLF-6), reducing the expression of chitinase-3 like protein
(CH13L1) and inactivating MEK1/2 and PI3 signaling [58]. KLF-6
is involved in cell invasion and migration, which gets inhibited
as result of this downregulation.

miR-152: Another miRNA that inhbits invasion, apoptosis
and migration of GBM stem cells (GMCs) and is downregulated
in GBM [59]. Its acts by targeting Kruppel-like factor (KLF4)
which downregulates galectin-3 (LGALS3) and inactivates MEK
½ an dPI3K signaling pathways [60].

miR-491: miR-491 is shown to inhibit the expression of
protein kinase B (p-AKT1), proliferating cell nuclear antigen
(PCNA), Cyclin D1 and MMP-2. This leads to arrest of GSCs in
G0/G1 phase, reduced proliferative activity and invasive
potential. This pathway is a target for new therapeutic agents
[61].

miR-125b: miR-125 is an oncogene, commonly
overexpressed in GSCs. Its suppression can decrease
proliferative activity and invasive potential of GSCs [62]. It is
also involved in the development of drug resistance to
temozolamide (TMZ) [63]. An inhibition of the miR-125b on
the other hand sensitizes GSCs to TMZ, downregulating
MMP-2, MMP-9 through PIAS3 (which inhibits STAT signaling)
in vivo and in vitro [64].

miR-181c: Overexpression of miR-181c inhibited GSC T98G
migration and invasion [65,66]. The expression of E-cadherin

was significantly upregulated, while N-cadherin and vimentin
was significantly down-regulated by miR-181c [65]. miR-181c
overexpression also inhibits TGF-β signaling by down-
regulating TGFBR1, TGFBR2 and TGFBRAP1 expression [65].
miR-181c thus plays a key role in GBM invasion, migration and
mesenchymal transition [65,66].

Conclusion
GBM is an aggressive tumor with heterogeneous molecular

features and complex host interactions involving the interplay
of several pathways, many of which are amenable to
therapeutic intervention.
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