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Abstract

Purpose: Although the histamine receptor antagonists
have been reported to enhance consolidation of memory
in diverse disease states of the central nervous system,
their contribution to the long-term potentiation (LTP), a
cellular form of learning and memory, remains unknown.
Herein, we evaluate the effect of H3 receptor (H3R)
antagonist thioperamide (inverse agonist) on the LTP in
healthy rats and compare the effect with that of
histamine as an agonist, and pyrilamine, as a H2R
antagonist.

Methods: LTP was induced in the dentate gyrus, where
field potentials were recorded during infusions of saline,
histamine, thioperamide or pyrilamine alone by
application of high- frequency stimulation protocols.

Results: The short-term and long-temp potentiation of
EPSP, not of PS, in the thioperamide group were
significantly higher in comparison with controls, indicating
that induction and maintenance of synaptic, not somatic,
LTP further enhanced by H3R antagonism. There were
also significant differences in short-term and long-term
potentiation of PS between the histamine and pyrilamine
groups, indicating H1R-mediated dyssynchrony in granule
cell of the dentate gyrus.

Conclusion: Histamine seems not to play a significant
functional role in the perforant pathway- dentate gyrus
synapses, but the antagonism of H3R should be
considered in treatment of cognitive dysfunctions,
although other forms of synaptic plasticity such as long-
term depression and depotentiation of LTP are needed.

Keywords: Dentate gyrus; Histamine H3 antagonists;
Long-term potentiation; Memory disorders

Introduction
Several lines of evidence indicate that the DG encodes the

contextual memory engrams that represent discrete
environments [1-3]. The granule cells in the dentate gyrus
region of the hippocampus are able to induce long-term
potentiation (LTP), which is a cellular model of learning and
memory [4]. They receive their primary excitatory afferent
input from the entorhinal cortex via the so-called perforant
pathway [5]. A number of different transmitters which are
released in a global manner in the brain act on these synapses,
thereby altering the afferent information should be processed
and LTP. One example of these transmitters is the biogenic
amine histamine, which is released from varicosities of axons
originating in the tuberomammillary nucleus of the
hypothalamus [6]. The earlier studies have been shown that
histamine is involved in the LTP formation in the CA1 region
[7-14] and the DG [15,16], and consolidation of memory
[17-20].

Among the four histamine receptors, the H3 receptor (H3R)
has received particular attention as a target for disease
characterized by memory impairment and cognitive decline,
such as Alzheimer’s disease [21] and schizophrenia [22]. In the
hippocampal formation the dentate gyrus contains the highest
density of H3R binding sites in rat brain [23]. These receptors
are presynaptically located, are negatively coupled to adenylyl
cyclase and mediate presynaptic inhibition of neuronal
histamine release [24] as well as other neurotransmitters [25].
H3R -antagonists have been reported to improve spatial
recognition memory in animal models [19,20,26]. Other
receptor subtype that has been implicated in spatial learning
and memory formation is histamine H1 receptor (H1R) [27],
which is coupled to Gq protein and phospholipase C (PLC) [28].
The results of behavior studies, however, are controversial:
While pharmacological blockade of the H1R improves spatial
learning in the Morris water maze [29], it, conversely, impairs
spatial learning in the 8-arm radial maze [30].

Binding of histamine to postsynaptic H1 receptors facilitates
the induction of LTP in area CA1 [7,10], whereas binding
histamine to the H3Rs located on perforant path terminals
[31,32] and activation of this receptor by a specific agonist [15]
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inhibit LTP, by decreasing glutamate release. It would be
valuable to study differences in the LTPs in response to direct
administration H1R agonist and H3R inverse agonist in the
same synaptic terminals because when activated, the H1R has
excitatory properties and the H3R has inhibitory properties.
Herein, considering above evidences, we hypothesized that
thioperamide would give the same outcomes with that of
histamine as a result of inverse agonistic effect on histamine
release [33], and thereby that of pyrilamine as a result of H1R
stimulation. Nevertheless, the action of thioperamide was
completely different from both histamine and pyrilamine,
suggesting post-synaptic H3R involvement in the dentate gyrus
LTP.

Materials and Methods

Experimental animals
Experiments were conducted in adult male Wistar rats

between the ages of 5-7 months in accordance with the
European Communities Council Directive of 24 November
1986 (86/609/EEC) regarding the protection of animals used
for experimental purposes and the guiding principles for the
care and use of laboratory animals approved by Erciyes
University. Rats were randomly divided into one of the four
groups (n=6 in each group) taking into account the drug which
will be infused during LTP recording.

Drugs
Drugs used in this study were: histamine (Sigma-aldrich,

H7125-5G), and thioperamide maleate (Cayman chem.
148440-81-7) and pyrilamine maleate (Sigma-aldrich, 59-33-6).
Drugs were dissolved in saline, titrated to pH 7.4 and stored as
stock solutions. Saline, Histamine (10 µM), pyrilamine (10 µM)
or thioperamide (10 µM) was infused to the DG in 10 µL
volume for 10 minutes using a microinfusion pump (Stoelting
Co, Wood Dale, Illinois, USA).

Electrophysiology
Details of the protocols used for electrophysiological

experiments are described elsewhere [34]. Briefly, after rats
were anesthetized with intraperitoneally injected urethane
(1.2 g/kg), a double-barrel glass micropipette (Borosilicate,
outer diameter 1.5 mm, length 10 cm length; World Precision
Instruments) was inserted into the granule cell layer of the DG
in the right hemisphere (in mm, from bregma: anteroposterior:
−3.5; mediolateral: 2.15; dorsoventral: 2.5-3 mm below the
dura) to record the field potential. A bipolar tungsten
electrode (stainless steel, Teflon-coated, 127 μm in diameter,
insulated except at its tips) was used to stimulate the medial
perforant path (PP, from bregma, in mm: anteroposterior:
−8.0; mediolateral: 4.2; dorsoventral: 2-2.5 below the dura) of
the right hemisphere. The depth of recording and stimulating
electrodes (dorsoventral coordinate) was adjusted to obtain a
large positive excitatory postsynaptic potential (EPSP) followed
by a negative-going population spike (PS) in response to
perforant path stimulation. These positions of both electrodes

were previously verified to be in the granule cell layer of the
dentate gyrus and in the PP [35,36]. The recording barrel was
filled with 3 M NaCl (tip resistance: 2-10 MΩ), and the other
was filled with SF or histamine, either alone or together with
pyrilamine or thioperamide.

After a stable EPSP was obtained, the PP was stimulated by
pulses at an intensity that ranged from 0.1 to 1.5 mA at 0.05Hz
three times and by increasing the intensities from a 0.1 mA to
a 1.5 mA step by 0.2 mA per step to create an input-output
curve, which was stored for off-line analysis. The stimulus
intensity produced by half of the maximum PS amplitude was
determined (test stimulus) and then used throughout the
experiment. LTP was induced using high-frequency stimulation
(HFS; 100 Hz, 1 sec, 4 times), with the test stimulus, after 15
min of baseline recording. Before LTP induction protocol, a 10
μl volume of drugs or saline was infused into the dentate gyrus
at a rate of 1 μl/min using a Hamilton syringe (25 μl) driven by
a syringe pump (Stoelting Co., Wood Dale, Illinois, USA).
Following the delivery of HFS, the test stimulus was repeated
every 30 s for up to 60 min.

Data analysis and statistics
The slope of the EPSP was calculated as the amplitude

change at 20-80% of the voltage difference between the start
and the peak of the waveform, whereas the amplitude of PS
was calculated as the difference from the first positive peak to
the negative peak for each current value. The raw values of the
EPSP slope and PS amplitude during the I/O experiment were
analyzed using a separate two-way repeated measures
ANOVA, with drug as between-subjects variables, and stimulus
intensity (8 levels of intensity) as a within-subjects variable.
The mean value of the EPSP slope and PS amplitude during 5-
min baseline recording was evaluated as 100 percent. Each
EPSP and PS was expressed as the percentage of this value.
The average between 15-20 minutes of recording was defined
as the magnitudes of short-term potentiation. The averages
between 85-90 minutes of recording were defined as the
magnitudes of LTP.

Possible differences in the magnitudes of PTP and LTP were
assessed by one-way ANOVA with drug as between-subjects
factors, followed by post hoc comparisons (Tukey’s test)
between the groups. Significance was set at p<0.05 (two-
tailed). All statistical analyses were performed using SPSS
software (SPSS, Chicago, IL).

Results

Pyrilamine or thioperamide has no effect on
baseline transmission in the synapses between
perforant pathway and the dentate gyrus

The input/output curve represents a global relationship
between stimulus intensity and the synaptic (EPSP slope) and
spike (PS amplitude) components of the compound field
potential, namely the baseline synaptic transmission. Figure 1
shows the I/O curves taken before and after a 10-minute
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infusion of saline or drugs alone. The absence of a treatment
effect and significant treatment × intensity interaction (p>0.05)
indicates inefficacy of the drug used on baseline synaptic

transmission. Moreover, there was no significant difference in
both EPSP slopes and PS amplitudes during infusion period
between groups (Figure 1).

Figure 1 The Input / Output curves obtained before and 10 min after infusion for each drug as a function of stimulus intensity.
Note that both PS amplitude (upper panel) and EPSP slope (bottom panel) in each stimulus intensity do not significantly
change after histamine (n= 6; 10 µM), thioperamide 10 µM (n= 6; 10 µM) or pyrilamine (n= 6; 10 µM) infusion.

Long-term potentiation
Comparable pre-LTP input/output curves showed that no

gross differences in baseline function between groups that
might confound the interpretation of other measures of
synaptic function. Multivariate analysis with the independent
factor of "group" (controls, histamine, thioperamide,
pyrilamine) showed a significant group effect on both short-
term potentiation (F3,22=6.16; p=0.003) and long-term
potentiation (F3,22=4.37; p=0.015) of EPSP as well as those of

PS amplitude (F3,22=4.10; p=0.019 and F3,22=3.99; p=0.021,
respectively). The short-term and long-term potentiation of
EPSP, not of PS, in the thioperamide group were significantly
higher in comparison with controls (Tukey test, Ps<0.030). This
indicates that potentiation of neural output does not
significantly alter, even if induction and maintenance of
synaptic LTP could be further enhanced by H3R antagonism.
There were also significant differences in short-term
potentiation of EPSP between the thioperamide and
pyrilamine groups (p=0.030), and in short-term and long-term
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potentiation of PS between the histamine and pyrilamine
groups (p=0.013 and p=0.048, respectively). Other group
comparisons did not reach significance (p>0.05) (Figure 2).

Figure 2 Thioperamide (Thio) enhances the short-term and long-temp potentiation of EPSP (A and C), but not of PS (B and D)
in hippocampal dentate gyrus. A and B: Time course of and EPSP slope (A) and PS amplitude (B) changes from 0 to 90 minutes
following high-frequency stimulation. After a 15-minute baseline recording, LTP was induced by means of high-frequency
stimulation (arrows; 100 Hz, 1 sec, 4 times), which was applied beginning at time 0. Infusions were made prior to the
stimulation protocols (horizontal bar). Error bars denote the standard errors of the means, n = 8 for saline group, n = 6 for
other groups. C and D: Short-term and long-term potentiations were defined as the averages of 10 excitatory postsynaptic
potential (EPSP) slope (C) and 10 population spike (PS) amplitudes (D) between 15-20 minutes and 85-90 minutes,
respectively.* indicates significant difference.

Discussion
To our knowledge this is the first electrophysiological study

showing action of thioperamide, histamine H3R antagonists/
inverse agonist, in the DG-LTP. The present study shows that

thioperamide, but not histamine enhances LTP in the PP–DG
synapses, without causing any changes in baseline synaptic
transmission. These findings agree with the result of a
previous study showing that intraperitoneal injection of 1
mg/kg methimepip, a histamine H3R receptor agonist,
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decreased LTP in the dentate gyrus of control rats [15]. The
enhancement in LTP conforms to the findings that blockade of
H3R augments glutamate release, which is required for
induction of LTP, within the DG, whereas its activation inhibits
glutamate release and LTP [31,32,37], and may be underlying
mechanism of improved performance in diverse cognitive
tasks in rats [38]. In addition, the present study indicates
effectiveness of histamine on the DG as has been previously
reported when LTP was induced by one time 60-Hz tetanic
stimulation [16]. Nevertheless, histamine effect might change
across different hippocampal regions. In the CA1 region,
histamine (l0-100 µM) was found to produce a statistically
significant LTP of fEPSPs when combined with a weak tetanus
(0.25 sec, 50 Hz) [7]. In the CA3 region of the hippocampus,
histamine promotes synchronized bursts of action potentials
[39], an activity pattern that is known to be a physiological
stimulus for the occurrence of LTP.

The functional role of postsynaptic H3R subtypes is yet to be
explored. It has been described at least three functional rat H3
receptor isoforms (H3A, H3B, and H3C) that couple to the Gi
protein-dependent inhibition of adenylate cyclase or
stimulation of p44/p42 mitogen activated protein kinase
(MAPK) [40]. H3A isoform was more effective in the
stimulation of p44/p42 MAPK and the expression of this
isoform in the dorsal part of the dentate gyrus, in proportion
to overall expression, was more prominent than that of the
other isoforms [40]. The MAPK pathway is believed to be
important in neuronal plasticity and is activated in
hippocampal long-term potentiation [41]. Interestingly, in the
caudate putamen and nucleus accumbens H3R is mainly
expressed at the post-synaptic site on the MSNs of both the
direct and indirect movement pathways [42]. If the MAPK
pathway mediated thioperamide effect on the LTP, then
possible existence of postsynaptic H3Rs would be speculated.
Indeed, there is fragmentary evidence pointing to possible
existence of postsynaptic H3Rs. Such conclusion is arrived at
when agonist stimulation of the H3R produces the same
outcome as a parallel experiment, in which the targeted
effectors (histamine or otherwise) are exogenously
administered or suppressed [43]. Suggesting this conclusion,
when we infused histamine we observed an increase in EPSP-
LTP, in a similar way as thioperamide, although the difference
between the control and histamine groups remained trend
level.

Histamine effect on the LTP did not reach statistical
significance compared to control group, whereas PS-LTP, not
EPSP-LTP, was attenuated by H1R blocker, pyrilamine,
compared to histamine group. This finding indicates an effect
on the number of granule cells that discharge in synchrony
because the changes peculiar to PS amplitude following
induction protocols can be result from voltage-sensitive
changes of intrinsic excitability and/or shift in net inhibition
[44-46]. Although the H1-receptor antagonist mepyramine (1
μM), in CA1 pyramidal cells, blocked the initial depression of
firing and attenuated the long-lasting histamine-mediated
excitation [12], in the striatum [47], septal neurons [48], and
dorsal lateral geniculate [49] activation of H1R may increase
neuronal excitability by blocking a leak K conductance.

Together, these data suggest that a functional H1R could
involve a distinctive mechanism operating in synaptic
plasticity.

Receptor binding studies showed that granule cells in the
DG synthesize the histamine H1Rs and H2Rs in their dendrites
[40,50,51], which are coupled positively to phospholipase C
and to adenylyl cyclase, respectively [52]. The phospholipase C
– PKC signalling cascade have been shown to be important in
the induction and early stages of synaptic plasticity [4],
whereas the cAMP – PKA signalling cascade in the late phase
of NMDA receptor dependent LTP [53]. These evidences point
to H1R and H2R as the effectors of histamine in LTP induction.
In agreement with this fact, LTP in the CA1 area of
hippocampus was significantly reduced in both H1R and H2R
gene knockout mice when compared with their respective
mice [14,54]. Nevertheless, contrary results have also been
reported: Histamine facilitates the induction of LTP [7] via
activating phospholipase C [24], whereas depressed medial
perforant path EPSCs more strongly, with an effect which was
blocked by thioperamide, but not by the H1R and H2R
antagonists [37]. The most conservative explanation of the
results presented here is that the effect of histamine is dose-
dependent and is affected by extracellular pH. A dose-
dependent effect of histamine was reported in baseline PS (an
increase in lover doses) and EPSP (a decrease in higher doses)
activity of the CA1 synapses in vitro [7]. Histamine increases by
up to tenfold synaptic transmission that was mediated by
NMDA receptors at lowered pH, but there was no significant
action of histamine at a pH of 7.4 [55]. Decreased activation of
H1Rs and H2Rs due to decreased synthesis and its release of
histamine, however cannot be excluded, because an activation
of H3Rs by infusion of histamine at the PP-DG synapses [25].

There was no significant difference between before and
after histamine or thioperamide infusion anywhere along the
input-output curve. Input-output curves for fEPSPs and PS can
vary for a number of reasons, such as differences in synaptic
density, threshold for synaptic transmission, excitability or
altered strength of individual synapses within the population
[56]. A lack of difference between before and after infusion
indicates that synaptic organization or baseline excitatory
transmission in the synapses between perforant pathway and
granule cell does not affected by histamine or its antagonists.
Thus, there appear to be no gross differences in baseline
function between before and after infusion that might
confound interpretation of other measures of synaptic
function.

Our study supports that H3R antagonists are involved in the
regulation of memory consolidation [25] and may have
cognition improving properties in animal models of narcolepsy,
Alzheimer’s disease, attention deficit/ hyperactivity disorder
and schizophrenia, which all characterized with the brain
histaminergic system is defective [57]. H3R antagonists
enhanced behavioral performance in a variety of rodent
learning paradigms [58-61] and reversed contextual fear
conditioning and spatial navigation deficits induced by fetal
ethanol [62] or scopolamine [61].
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Strong and consistent evidence exist to suggest that
administration of H3R antagonists produces strong
wakefulness decreases slow wave sleep and REM sleep in a
dose-dependent fashion [63-66]. Although, the exact
neurophysiological mechanisms underlying memory
consolidation processes during sleep are still a matter of
debate, recent data indicate that sleep contributes to memory
formation by consolidating new information and by integrating
it with previously stored contents [67]. We have speculated
that Thioperamide- enhanced LTP probably lead to an increase
in synchronous activation between amygdala and
hippocampus, underlying sleep-dependent memory
consolidation. Supporting this speculation, H3Rs modulated
the hippocampal theta oscillation [68], which greatly facilitates
the induction of LTP in the hippocampus [69].

Because previous studies have reported a dose dependent
effect of thioperamide on LTP and behavior of animals in
animal models of various CNS diseases, it would be worthwhile
to explain why the used dose of the drugs was selected. A
study using extracellular and whole-cell patch-clamp recording
techniques showed that the dose of 10 µM thioperamide is
reported to be enough for blockage of 10 µM histamine –
induced depression in the excitatory synaptic transmission in
the dentate gyrus for 1 h [31]. Histamine induced reduction of
intracellularly recorded excitatory postsynaptic currents were
similar magnitude at the concentrations of 7 µM and 70 µM
[32]. Surprisingly, an earlier study reported dose-dependent
effect of histamine on extracellularly recorded PS amplitude,
but not EPSP slope at CA1 region [7]. A dose of 10 µM was
used based on the findings of the above-mentioned studies
that histamine had no dose-dependent effect on basal
transmission, as shown by EPSP slope.

Conclusion
In conclusion, although more detailed studies are needed,

histamine seems not to play a significant functional role in the
perforant pathway-dentate gyrus synapses, but the
antagonism of H3R should be considered in treatment of
cognitive dysfunctions.
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