

International Journal of Drug Development & Research | January-March 2013 | Vol. 5 | Issue 1 | ISSN 0975-9344 | Available online http://www.ijddr.in Covered in Official Product of Elsevier, The Netherlands SJR Impact Value 0.13 & H index 2 ©2013 IJDDR

Standardization parameters and HPTLC fingerprinting of the roots of *Ricinus communis* Linn

Abhilasha Mittal¹ and Mohammed Ali²

¹Faculty of Pharmaceutical Sciences, Jyoti Vidyapeeth Women's University, Vedant Gyan Valley, Ajmer Express Way, NH-8, Jaipur – 302019 (Rajasthan), India
²Phytochemistry Research Laboratory, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi - 110062, India

Abstract

Ricinus communis L. (Euphorbiaceae), known as castor plant, is widespread throughout tropical regions of India and grows as an annual or perennial soft wooded small tree. A decoction of the root is administered to relieve lumbago, and a root paste is applied to alleviate toothache. The roots contained glycosides, phenolic compounds, steroids and acidic components. The root bark of R. communis furnished 5.74% of the total ash, 2.03% of the acid insoluble ash and 2.98% of the water soluble ash. There was 9.46 % of water content. Successive extraction of the roots (50 g) yielded 0.362 g, 0.482 g, 1.243 g and 2.643 g of the extracts in petroleum ether, chloroform, methanol and water, respectively. Individual extractions of the roots (15 g) with these solvents produced 0.235 g, 0.727 g, 7.425 g and 12.017 g $\,$ of the extracts, respectively. Fluorescence behavior of powdered root bark of R. communis indicated that the light yellow powder of the bark powder changed to black at λ_{max} 366 nm. Among the nine elements, calcium (350.45 ppm) was present in the maximum amount followed by followed by potassium (330.50 ppm), magnesium (230.68 ppm) and cadmium (198.57 ppm). Sodium (56.26 ppm) and lead (8.18 ppm) were detected in trace amounts. The HPTLC scanning of the petroleum ether, chloroform and methanol extracts of the roots exhibited 5, 4 and 4 major bands, respectively.

*Corresponding author, Mailing address: **Abhilasha Mittal** E-Mail: abhilashamittal24@gmail.com

<u>Key words:</u>

Ricinus communis, roots, phytochemical screening, HPTLC fingerprint.

How to Cite this Paper:

Abhilasha Mittal* and Mohammed Ali "Standardization parameters and HPTLC fingerprinting of the roots of R*icinus communis* Linn" Int. J. Drug Dev. & Res., January-March 2013, 5(1): 229-234.

Copyright © 2013 IJDDR, Abhilasha Mittal et

<u>al</u>. This is an open access paper distributed under the copyright agreement with Serials Publication, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article History:-----Date of Submission: 02-01-2013 Date of Acceptance: 28-01-2013 Conflict of Interest: NIL Source of Support: NONE

INTRODUCTION

Ricinus communis L. (Euphorbiaceae)is commonly known as 'palm of Christ', Jada (Oriya), Verenda (Bengali), Endi (Hindi), Errandi (Marathi) and Diveli (Guajarati)^[1]. It is an annual or perennial soft

Full Length Research Manuscript

wooded small tree up to 6 m in height. The plant is widespread throughout tropics and warm temperate regions of the world and cultivated in India and other countries up to 2,000 m altitude [2]. The seeds contained 45% of fixed oil which consist glycosides of ricinoleic, isoricinoleic, stearic and dihydroxy stearic acids [3,4]. The GC-MS analyses of R. communis essential oil using capillary columns has shown compounds like α -thujone (31.71%), α -pinene (16.88%). camphor (12.92%) and camphene (7.48%)^{[5].} The oil is useful in the treatment of eve inflammation and in the manufacture of sebacic acid, surface coating, disinfectants, cosmetic and pharmaceutical preparations^{[6].} Castor bean has also been proposed as a potential source of biodiesel, the high oil content of its seeds [7]. It is believed that castor oil was first used as an ointment 4,000 years ago in Egypt, from where it spread to other parts of the world, including Greece and Rome, where it was prescribed as a laxative 2,500 years ago^{[8].} The plant possessed beneficial effects such as anti-oxidant.^[9,10] antiulcer^{[11],} anti-inflammatory, ^[12,13]Antidiabetic, ^[14] hepatoprotective, ^[15,16,17] antifertility^[18] and many other medicinal properties. The roots furnished phenolic methyl esters and fatty acid glycosides^[19, 20]. The present manuscript describes quality control parameters of the roots.

MATERIALS AND METHODS Plant material

The fresh roots of *R. communis* were collected from the arid waste land of Jaipur (Rajasthan). The plant material was identified on the basis of exomorphic characters and reviews of literature by Prof. M. P. Sharma, taxonomist, Department of Botany, Jamia Hamdard, New Delhi. A voucher specimen No. PRL/ JH / 09 / 12 is deposited in the herbarium of the Department of Pharmacognosy and Phytochemistry, Jamia Hamdard, New Delhi.

Physicochemical evaluation

The dried roots of *R*. *communis* were coarsely powdered in a grinder and stored in an air tight

container. Physicochemical parameters were calculated according to the prescribed methods. Preliminary phytochemical analysis of the alcoholic extract of the powdered roots was performed.

HPTLC fingerprinting

The root powder (5 g) was extracted with 25 ml each of petroleum ether, chloroform and methanol separately for 1 hr. The extracts were dried individually to get the dark brown residues. Each residue was dissolved in petroleum ether, chloroform and methanol (5 ml), respectively, and applied on pre-coated silica gel 60F254 TLC plates.

Optimization of HPTLC solvent system

A number of solvent systems were tried for different extracts. The most satisfactory resolution was obtained in the solvent as summarized in Table 6.

Sample application

The spots of each sample extract was applied in concentration of 10μ l in duplicate on pre-coated silica gel 60F254 TLC plates with the help of Linomat 5 applicator attached to CAMAG HPTLC system, which was programmed through WIN CATS software.

Development of chromatogram

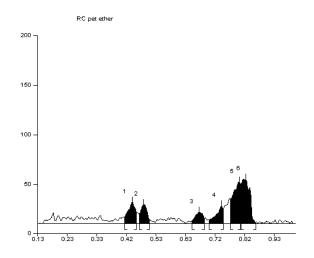
The chromatogram was developed in a Twin trough glass chamber 20x 10 cm saturated with different solvents till a suitable height of the solvent front was obtained.

Detection of spots

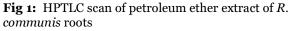
The air-dried plates were viewed in ultraviolet radiation to mid day light. The chromatograms were scanned by densitometer at 400nm after treatment with anisaldehyde- sulfuric acid reagent. The R_f values and finger print data were recorded by WIN CATS software. The 3D display of all tracks and fingerprints of all different samples at 400nm for petroleum ether, chloroform and methanol extracts.

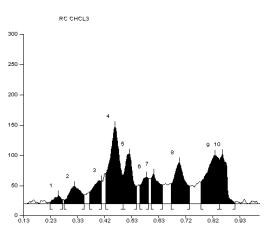
RESULTS AND DISSCUSSION

The preliminary phytochemical screening of the methanolic and aqueous extract was carried out by chemical testing with different specific chemical reagents. It responded positively to the chemical tests of glycosides, phenolic compounds, steroids and acidic components (Table 1).

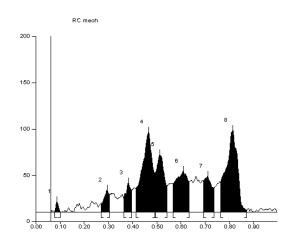

Significant amount of acid insoluble ash has been detected which indicates presence of various silicacious substances. Cellulosic substances also contribute markedly in the total ash as indicated by water soluble ash. The root bark of R. communis furnished 5.74% of the total ash, 2.03% of the acid insoluble ash and 2.98% of the water soluble ash. There was 9.46 % of water content as indicated by loss of drying (Table 2). Small amount of non-polar substances in comparison to polar solvents was observed in the roots. However, alcoholic and aqueous extractives showed significant yields of the extracts (Table 3). The root bark of R. communis (50 g) furnished 0.362 g petroleum ether extract, 0.482 g of chloroform extract, 1.243 g of methanol and 2.643 g of water extractive on successive extraction. Individual extractions of the roots (25 g) with these solvents produced 0.235 g, 0.727 g, 7.425 g and 12.017 g, respectively.

Fluorescence behavior of powdered root bark of *R*. *communis* indicated that the light yellow powder of the bark powder changed to black at λ_{max} 366 nm. It remained identical when the powder was reacted with Conc. HNO₃, Conc. H₂SO₄, iodine and ferric chloride solution (10%).


The colour of the bark powder appeared green on treatment with Conc. HCl, chloroform and picric acid and reddish brown with sodium hydroxide (10%) and methanol at λ_{max} 366 nm (Table 4).


Elemental analysis of the ashes of the root bark of *R*. *communis* showed the maximum amount of calcium (350.45 ppm) followed by potassium (330.50 ppm), magnesium (230.68 ppm) and cadmium (198.57 ppm). Sodium (56.26 ppm), iron (45.86 ppm), copper (33.20 ppm), Zinc (23.25 ppm) and lead (8.18 ppm) were detected in trace amounts. Mercury and arsenic could not be detected in the ashes of R. *communis* (Table 5).

HPTLC is an invaluable quality assessment tool for the evaluation of botanical materials. It allows for the analysis of a broad number of compounds both efficiently and cost effectively. HPTLC studies have shown that this technique is more versatile than ordinary TLC methods as the spots were well resolved. HPTLC fingerprinting of the root extracts of R. communis was determined for the petroleum ether, chloroform and methanol extracts after spraying with anisaldehyde-sulphuric acid reagent using CAMAG HPTLC system. The phytochemical variations were observed in chromatograms as shown in Figures 1, 2 and 3. The chloroform extract of the root sample at 366 nm showed the presence of highest number of TLC spots (Table 6) and purity of the sample was confirmed by comparing the absorption spectra at start, middle and end position of the bands. The HPTLC scanning of the petroleum ether extract of the roots of *R*. communis showed five major bands at Rf 0.46, 0.50, 0.75, 0.81 and 0.86 corresponding to the peak areas 13.36%, 10.30%, 25.97% and 32.16%. The chloroform extract of roots exhibited prominent bands at Rf 0.49, 0.54, 0.74, 0.85 and 0.91 with peak areas of 21.97%, 11.84%, 13.25%, 17.32% and 9.61%, respectively. The methanol extract of the roots showed the presence of four important bands at Rf 0.49, 0.54, 0.83 and 0.87 having peak areas of 25.34%, 14.07%, 14.70% and 28.25%, respectively.



Int. J. Drug Dev. & Res., January-March 2013, 5 (1): 229-234 Covered in Scopus & Embase, Elsevier

Fig 2: HPTLC scan of chloroform extract of *R*. *communis* roots

Fig 3: HPTLC scan of methanol extract of *R*. *communis* roots

Table 1: Detection of phytoconstituents in roots of*R. communis*

S. No.	Constituents	Methanol	Water
1	Alkaloids	-	-
2	Carbohydrates	-	-
3	Glycosides	+	+
4	Phenolic compounds and tannins	+	+
5	Flavonoids	-	-
6	Proteins and free amino acids	-	-
7	Saponins	-	-
8	Steroids	+	+
9	Acidic compounds	+	+
10	Mucilage	-	-
11	Lipids and fats	+	-

Table 2: Physiochemical parameter of root bark

 powder of *Ricinus communis*

Physiochemical parameter	Value (% w/w)	
Ash value		
Total ash	5.74	
Acid insoluble ash	2.03	
Water soluble ash	2.98	
Loss on drying	9.46	

Table 3: Extractive values in different solvents of the*Ricinus communis* roots (15 g)

S. No.	Individual	Successive (50g)	
Petroleum ether	0.235	0.362	
Chloroform	0.727	0.482	
Methanol	7.425	1.243	
Water	12.017	2.643	

 Table 4: Fluorescence behavior of powdered roots of Ricinus communis

S. No.	Chemical Treatment	Observation		
		Day light	U.V. 254	U.V. 366
1	Drug powder	Light Yellow	Black	Black
2	Conc. HCl	Light green	Green	Green colour
3	Conc. HCl+D.W.	Greenish yellow	Light yellow	Light green yellow
4	Conc. HNO ₃	Red brown colour	Green colour	Black colour
5	Conc. HNO ₃ +D.W	Light Red brown	Green colour	Black
6	Conc. H ₂ SO ₄	Greenish black	Green black	Dark black
7	Conc. H ₂ SO ₄ +D.W	Brown Black	Green	Black
8	Iodine	Reddish brown	Dark green	Black
9	10% NaOH	Light yellow	Greenish yellow	Reddish brown
10	$CHCl_3$	Reddish brown	Green	Dark green
11	Methanol	Light reddish yellow	Light yellow	Light reddish yellow
12	10% FeCl ₃	Green	Dark green	Black
13	Picric acid	Yellow	Yellow	Green

Table 5: Elemental analysis of ashes of *Ricinus*communis roots

S. No.	Elements	Amount (ppm)	
1	Sodium	56.26 ppm	
2	Potassium	330.50 ppm	
3	Calcium	350.45 ppm	
4	Magnesium	230.68 ppm	
5	Iron	45.86 ppm	
6	Copper	33.20 ppm	
7	Zinc	23.25 ppm	
8	Mercury		
9	Lead	8.18 ppm	
10	Arsenic		
11	Cadmium	198.57 ppm	

Table 6: TLC profile of *Ricinus communis* root extracts

Extract	Solvent system	No of peaks	R _f value	Visualizing agents
Petroleum ether	Toluene: ethylacetate : acetic acid (8.5:2.5: 0.5)	6	0.46, 0.50, 0.69, 0.75, 0.81, 0.86	UV 366 nm
Chloroform	Toluene: ethyl acetate :acetic acid(7.5:2.5:7)	10	0.27, 0.35, 0.41, 0.49, 0.54, 0.59, 0.64, 0.74, 0.85, 0.91	Anisaldehydein sulphuric acid
Methanol	Toluene : ethyl acetate : acetic acid (7.5:2.5: 0.6)	8	0.10, 0.30, 0.40, 0.49, 0.54, 0.63, 0.74, 0.87	Anisaldehyde in sulphuric acid

CONCLUSION

The physicochemical study, preliminary phytochemical screening and HPTLC fingerprint analysis can be used as a diagnostic tool for the correct identification of the plant. Adulterants, if any, in this plant material can be easily identified by using these parameters.

REFERENCES

- Nadkarni K. M. Indian Materia Medica, Volume One, 2nd edition- 1927, pp 1065-1070.
- Anonymous, The Wealth of India, Raw materials, Publication and information Directorate, CSIR, New Delhi.2003, 9 pp 26-47.
- Khogali A, Barakat S, Abou-Zeid H. Isolation and identification of the phenolics from *Ricinus communis* L. *Delta J. Sci.* 1992; 16, 198–211.

- Kang SS, Cordell A, Soejarto DD, Fong HHS. Alkaloids and flavonoids from *Ricinus communis. J. Nat. Prod.* 1985; 48 (1): 155–156.
- Kadri Adel, Gharsallah Neji, Damak Mohamed, Gdoura Radhouane, Chemical composition and *in vitro* antioxidant properties of essential oil of *Ricinus communis* L. J. Medicinal Plants Research. 2011; 5(8): 1466-1470.
- Lin JT and Acinas A Reginospecific analysis of diricinoleoylacyl glycerol in castor (*Ricinus communis* L) oil by Electro Spray Ionization – Mass spectrometry J. Agric. Food chem. 2007; 44 (2): 303 - 307.
- 7) Da Silva Nde, L, Maciel, M.R, Batistella, C.B.&Maciel Filho, R.Optimization of biodiesel production from castor oil. *Appl. Biochem. Biotechnol.* (2006); 130: 405–414.
- Scarpa, A. & Guerci, A.Various uses of the castor oil plant (*Ricinus communis* L.). A review. J. *Ethnopharmacol.*1982; 5: 117–137.
- 9) Singh Ramesh Kumar, Gupta M K, Katiyar Deepti, Srivastava Anshul, Singh Parul, in-vitro antioxidant activity of the successive extracts of *Ricinus communis* stems, *IJPSR*. 2010; 1(8) (Suppl.).
- 10) Gupta Mahesh Kumar, Sharma P.K, Ansari S. H, In-vitro antioxidant activity of the successive extracts of *Ricinus communis* leaves *International J. Plant Sciences* (2006); 1 (2) : 229-231.
- Rachhadiya Rakesh M, Kabra Mahaveer Prasad, Shete Rajkumar V, Evaluation of antiulcer activity of castor oil in rats. *International J. Research Ayurveda & Pharmacy* 2011; 2(4): 1349-1353.
- Ilavarasan R, Mallika M, Venkataraman S. Antiinflammatoryand free radical scavenging activity of Ricinus communis root extract. *J Ethnopharmacol.* 2006; 103: 478-80.
- Adriana Cristina Valderramas, Sergio Henrique Pereira Moura, Maira Couto, Silvana Pasetto, Gilberto Orivaldo Chierice, Sergio Augusto Catanzaro Guimaraes, Ana Claudia Bensuaskide Paula Zurron, Anti-inflammatory activity of *Ricinus communis* derived polymer; *Braz J Oral Sci.* 2008; 7: 27.
- 14) Shokeen P, Anand P, Murali Y. K, Tandon V. Antidiabetic activity of 50% ethanolic extract of

Ricinus communis and its purified fractions. *Food and Chemical Toxicology*, 2008; 46: 3458–3466.

- 15) Shukla B., Visen P. K. S., Patnaik, G. K., Kapoor N. K., Dhawan B.N., Hepatoprotective effect of an active constituent isolated from the leaves of *Ricinus communis* Linn, *Drug Development Research*, 1992; 26 (2): 183–193.
- 16) Visen, P. K. S, Shukla, B, Patnaik, G. K, Tripathi, S. C, kulshreshtha, D.K, srimal, R. C. and Dhawan, B. N. Hepatoprotective activity of *Ricinus communis* leaves. *Pharmaceutical Biology*, 1992; 30(4): 241-250.
- Natu, M. V, Agarwal, S, agarwal, S. L. and Agarwal,
 S. Protective Effect of *Ricinus communis* leaves in experimental liver injury. In *Indian J. Pharmacology*, 1977;., 4(9): 265-268.
- Sandhyakumary, K, Bobby, R.G, Indira, M., Antifertility effects of *Ricinus communis* Linn. On rats. *Phytother*. Res. 2003; 17: 508–511.
- Mittal, A, Ali M. Phenolic methyl esters and arachidonyl arabinosides from the roots of *Ricinus communis* L. *Der Pharm. Lett.* 2012; 4 (5): 1461-1466.
- 20) Mittal, A, Ali, M. Fatty acid glycosides from the roots of *Ricinus communis* L. *Amer. J. Pharmtech Res.* 2012; 2 (6): 637-649.

