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Abstract
Adiponectin(Adp) is an adipocyte-derived hormone that plays an important role 
in lipid metabolism and glucose homeostasis, and could preserve reproductive 
functions by stimulating hypothalamic-pituitary-gonadal axis activities at different 
levels. To investigate and verify the relationship between the Adp and the 
hypothalamic-pituitary-ovarian axis (HPO axis) in Wannan spotted gilts, serum 
reproductive hormones, serum Adp and mRNA expression of Adp, AdpR1, AdpR2, 
GnRH, GnIH, GnRHR, LH, FSH, FSHR, and CYP19 in HPO axis of 1, 30, 45, 90, and 
180-day-old Wannan spotted gilts were measured with ELISA and quantitative RT-
PCR using β-actin as an internal standard, respectively. The developmental pattern 
of serum FSH, and LH levels reaching the peak at 30d, followed by a significant 
decline on 45d. Serum Adp showed an opposite developmental pattern. The 
mRNA levels showed a similar relationship between serum hormones and Adp 
in Wannan spotted gilts. Thus we postulated that Adp may inhibit the secretion 
of some hormones in HPO axis through endocrine pathways and its action is 
mediated by AdpR during the prepubertal stages in Wannan spotted gilts.
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Introduction 
Adipokines, secreted by adipose tissue, participate in the 
regulation of thermogenesis, feeding, and reproduction [1]. 
As an adipokine, adiponectin (Adp), also known as AdipoQ [2], 
Acrp30 [3], apM-1 [4], and GBP28 [5], is a homotrimer of three, 
30 kDa subunits [6], and is widely expressed in adipose tissue, 
heart, muscle, and placenta [7-10]. Adp circulates as a multimer 
in plasma, at concentrations from 8 to 25 μg/ml in humans, 
and exhibits sexual dimorphism, with higher levels observed in 
females [11]. It has been shown that serum Adp levels are lower in 
obesity. However, there is little information regarding the effects 
of adiponectin on reproduction. Accumulating evidence indicates 
that Adp plays an important role in the regulation of food intake 
[12] and energy homeostasis [4], as well as in reproduction [13-
17]. The biological role of Adp is mediated by three Adp receptors 

(AdpRs): Adp receptor 1 (AdpR1), Adp receptor 2 (AdpR2), and 
T-Cad [18]. Expression of AdpR1 and AdpR2 is widespread, and 
had been identified not only in muscle, liver, and adipocytes, but 
also in the hypothalamus, pituitary, and ovary of humans and 
rodents [14,19-21].

The hypothalamic-pituitary-ovarian axis (HPO axis) is central to 
the female mammalian reproductive system. The hypothalamus 
releases gonadotropin-releasing hormone (GnRH) in pulses 
and these stimulate the pituitary to secrete both luteinizing 
hormone (LH) and follicle-stimulating hormone (FSH), via the 
interaction between GnRH and the gonadotropin-releasing 
hormone receptor (GnRHR). FSH then acts on the follicle-
stimulating hormone receptor (FSHR) to stimulate the ovary to 
secrete estradiol (E2). The enzyme aromatase P-450, encoded 
by the CYP19 gene, is responsible for a key step in estrogen 
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biosynthesis. Recent findings indicate that GnRH is not the 
sole hypothalamic regulatory neuropeptide of vertebrate 
reproduction, and gonadotropin-inhibitory hormone (GnIH) also 
plays a key role in the suppression of reproduction [22-24]. There 
is limited information regarding the modulatory effect of Adp on 
reproductive functions at different levels of the gonadal axis in 
pigs, and most studies have focused on the effects of Adp on the 
ovary [25-27]. The effects of Adp on overall endocrine function of 
the HPO axis in pigs remains unclear.

Wannan Spotted pig is the local breed in Huangshan, China, and 
has the characteristics of early maturity, a high reproduction rate, 
disease resistance and high-quality pork. In order to understand 
the interrelationship between Adp and the HPO axis in Wannan 
Spotted gilts, we measured serum levels of reproductive related 
hormones and mRNA expression of these genes. To the best of 
our knowledge, this study is the first to identify the effects of 
Adp on developmental changes in the HPO axis of gilts and to 
demonstrate developmental patterns of GnIH expression in pigs. 
The aim of this study was therefore to investigate the modulatory 
action of Adp on reproductive functions at different levels of the 
HPO and to examine the role of Adp in endocrine regulation in 
gilts. This information will be of great significance for the further 
development and utilization of this breed.

Materials and Methods
Animals
All animal experiments were approved by the local Animal Care 
Committee. Twenty-five healthy, Wannan Spotted gilts were 
supplied by the Animal Husbandry and Veterinary Medicine 
Bureau of Yi County, Huangshan, China. Five gilts were humanely 
slaughtered for blood and tissue sampling at each of 1, 30, 45, 90 
and 180 days of age. Blood was collected into serum separator 
tubes (BD Microtainer 365967) and centrifuged at 6000 g for 90 
s; resultant serum supernatant was stored at -80°C until hormone 
assays were conducted. Hypothalamus, pituitary, and ovary were 
snap frozen in liquid nitrogen and maintained at -80°C until 
required.

Measurement of serum hormones 
Serum was assayed for the presence of Adp, GnRH, GnIH, FSH, 
LH, and E2 using pig ELISA kits (R&D, USA). The sensitivity of the 
ELISA assays for Adp, GnRH, GnIH, FSH, LH, and E2 was given as 
25 pg/mL, 1.0 mIU/ml, 1.0 pg/mL, 0.1 mIU/ml, 0.1 mIU/ml, and 
1.0 pg/mL, respectively.

Quantitative RT-PCR (qRT-PCR) of tissue samples 
Total RNA was extracted from tissues using Trizol Reagent 
(Takara, China) following the manufacturer’s directions. RNA (1 
mg) was converted into cDNA using QIAGEN Quantitect kit and 
qRT-PCR performed in triplicate using cDNA from 100 ng RNA as 
the starting material for all reactions. PCR reactions (25 μl) were 
performed using SYBR®Premix Ex TaqTM II (Takara, China). All 
qRT-PCR reactions were measured using the Rotor-Gene 6000 
Quantitative Real-time PCR instrument (Corbett, Australia), using 
thermal cycling conditions recommended by the manufacturer 
(40 cycles of 10 s at 95°C, 20 s at 60°C, and 15 s at 72°C). qRT-
PCR was performed using intron-spanning primers and all 
primers were designed using Primer 5.0 software and Primer-
BLAST-NCBI. The 2-ΔΔCT (cycle threshold) method was used to 

calculate fold changes and β-·actin was employed as an internal 
standard. Primer pairs (Shanghai Sangon, China) used for specific 
amplification of porcine Adp, AdpR1, AdpR2, GnRH, GnIH, GnRHR, 
LH, FSH, FSHR, CYP19, and β-Actin are listed in Table 1.

Statistical analysis
Each test was repeated in triplicate. Relative quantification of 
mRNA levels was performed according to the 2-ΔΔCT method 
[28]. All data were analyzed using SPSS 16.0 (SPSS Inc., Chicago, 
IL, USA). Results were expressed as Mean ± SEM. Statistical 
analysis and evaluation were performed using one-way ANOVA 
and Bivariate correlation. A value of P<0.05 was considered 
statistically significant.

Results
Changes in Serum Adp, LH, FSH, and E2 secretion 
during postnatal development 
Mean serum Adp levels were lowest at 30 days of age, compared 
to all other days during postnatal development (P<0.05) (Figure 1A). 
Similarly, E2 levels were lowest at day 30 (P<0.01) (Figure 1B). In 
contrast, Serum FSH and LH levels exhibited a different pattern, 
showing an increase from day 1 to 30 and day 45 to 90 (Figures 
1C and 1D). FSH, and LH levels were higher at day 30 than other 
days (P<0.01). 

Changes in AdpR1, AdpR2, GnRH, and GnIH mRNA 
expression in the hypothalamus 
Adp mRNA levels were very low in the hypothalamus (Figure 2E, 
data not shown). Expression of AdpR1 mRNA in hypothalamus 
increased between days 1 to 90 and then decreased by day 180 

Target 
Genes

GenBank 
accession Primer sequences (5’-3’) Fragment 

size(bp)

β-Actin U07786.1 F-CTCGATCATGAAGTGCGACGT
S-GTGATCTCCTTCTGCATCCTGTC 114

Adp AY589691.1 F- CGAGAAGGGTGAGAAAGGAGAT
R- ATGCTGAACGGTAGACATAGGC

155

AdpR1 AY578142.1 F- GAGCATCTTCCGCATCCAC
S- GAACATCCCAAACACCACCTT 151

AdpR2 AY606803.1 F- GCCACCATAGGGCAGATTG
S- GCCAGCCACCACGAAGAT 159

GnRH NM_214274.1 F- AGCGCTTTGAGTGCACCGCT
S- TGCTCGCTGTCAGTGTCTCTGGT 133

GnIH GnIH F- GAGAGCAGCCCTGGGGCAATAG
S-TGAACGCGTGGATTGTTGGAGCA 165

GnRHR NM_214273 F-AGCCAACCTGTTGGAGACTCTGAT
R-AGCTGAGGACTTTGCAGAGGAACT 101

LH-β NM_214080 F-ATGCTCCAGAGACTGCTGTTGT
R-TGCTGGTGGTAAAGGTGATGCAGA 151

FSH-β NM_213875.1 F-TTGCTGCAATAGCTGTGAGCTC
R- TTTCTGGATGTTGGGCCTG 154

FSH-R NM_214386 F- TCGAGGCAAATGTGTTCTCC
S- AAGGTTCTGGAAGGCATCAG 101

CYP19 SSU92246 F- CTCGAGTTTTTCCCCAAGC
S- ACTGGCCTTGCTGTGTTTG 190

Table 1 Primer sequences and parameter used for real-time quantitative 
PCR.

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=47523613
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a peak at 30 to 90 days (P<0.05; Figure 4A). The pattern of AdpR2 
mRNA expression was similar to that of AdpR1 (P<0.01; Figure 
4B). CYP19 mRNA expression maintained consistently low levels 
from days 1 to 45, but was higher on day 90 (Figure 4C). FSH-R 
mRNA expression increased progressively from days 1 to 45 and 
then decreased to a nadir at day 90 (Figure 4D). Correlation 
analysis showed AdpR1 mRNA levels correlated positively with 
AdpR2 mRNA levels (r = 0.380; P<0.05), and negatively with 
CYP19 mRNA (r = -0.472; P<0.05) and serum E2 levels (r = -0.416; 
P<0.05).

Discussion
Adipose tissue play a crucial role in energy homeostasis, not only 
by storing triglycerides, but also in response to neural, nutrient, 
and hormonal signals mediated through adipokine (leptin, 
adiponectin, and resistin) secretion [1]. It is well known that 
leptin plays a role in the regulation of energy homeostasis and 
reproduction, and acts as a mediator in the crosstalk between 
adipose tissue and the HPO axis [1,29]. Recently, several studies 
have demonstrated that Adp also participates in the regulation of 
energy expenditure, thermogenesis, and food intake in the HPO 
axis [12,14,30].

(Figure 2A). AdpR2 mRNA expression increased progressively 
during postnatal development (Figure 2B). GnRH mRNA 
expression was lowest at day 30 compared to all other time 
points measured (P<0.05) (Figure 2C). GnIH mRNA expression 
decreased between days 1 to 90 and then increased by day 180 
(Figure 2D). 

Changes in AdpR1, AdpR2, FSH, LH and GnRH-R 
mRNA Expression in the pituitary gland
Adp mRNA levels were also very low in the pituitary gland 
(Figure 3E). AdpR1 and AdpR2 mRNA expression decreased 
between days 1 to 30, increased at day 45 and then decreased 
again by day 180 (Figure 3A). In contrast, FSH, LH and GnRH-R 
mRNA expression increased between days 1 to 30, decreased at 
day 45 and then increased by day 90 (Figures 3B-3D). Correlation 
analyses showed a negative correlation between AdpR2 mRNA 
levels and GnRHR (r =-0.639, P<0.01), LH-β (r =-0.507; P<0.05), 
and serum FSH levels (r =-0.460, P<0.05). AdpR1 mRNA levels 
correlated positively with AdpR2 mRNA levels (r = 0.517, P<0.05) .

Changes in AdpR1, AdpR2, CYP19, and FSH-R 
mRNA Expression in the ovary 
Ovarian AdpR1 mRNA expression increased significantly to reach 
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Figure 1
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Adp has been found in porcine follicular fluid at concentrations 
equivalent to that found in serum [25], although, Adp mRNA has 
not been previously identified in porcine ovarian or brain tissue 
[27]. In the present study, we found that porcine Adp mRNA was 
detected at very low levels in the hypothalamus, pituitary, and 
ovary. AdpRs mRNA is expressed widely in peripheral tissues, 
the brain, and granulosa cells in pigs [25,31]. In this study, we 
demonstrated that AdpRs mRNA is expressed in the HPO axis 
and shows no significant changes during postnatal development. 
We also found that serum Adp concentrations ranged between 

5 to 15 mg/L over the study period. Based on these results, 
we speculate that Adp produced in adipose tissue plays a role 
as an endocrine modulator in the reproductive function of the 
HPO, mediated through AdpR. Although we did not investigate 
how Adp reaches the brain, a previous study has shown that Adp 
does not cross the blood-brain barrier [19]. Thus, the mechanism 
through which Adp regulates the reproductive functions of the 
HPO axis requires further investigation.

The hormones of the HPO axis play an important role in HPO 
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Figure 3

axis development. Serum Adp levels have been shown to be 
inversely correlated with androgen levels in humans [32-34] 
and Adp inhibits both basal and GnRH-stimulated LH secretion 
in short-term treated rat pituitary cells [14]. At the level of 
the rat hypothalamus, Adp also influences oxytocin-secreting 
neuron excitability, perhaps explaining the increased oxytocin 
secretion observed in the obese human population [35]. Lu et 
al. demonstrated that Adp activated adenosine monophosphate 
protein kinase and decreased LH secretion in mouse LβT2-
immortalized gonadotropic cells [13]. Furthermore, AdpRs  
mediate adiponectin to increase production of progesterone 

and E2 by insulin-like growth factor (IGF) in humans [36]. Adp 
has also been shown to inhibit progesterone and LH-dependent 
insulin production by bovine theca cells in vitro [37,38]. These 
studies suggest Adp does have an effect on reproduction. Here, 
we observed that the pattern of serum FSH, and LH reaching the 
peak at 30d, followed by a significant decline on 45d. Serum Adp 
showed the opposite developmental pattern. These results imply 
that Adp may be involved in regulation of the early development 
of the reproductive axis in swine. The down regulation of serum 
Adp on day 30 may be due to increased levels of reproductive 
hormones. The longitudinal pattern of hypothalamic and 
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pituitary mRNA expression showed a similar relationship to 
serum hormones and Adp. Furthermore, AdpR1 mRNA levels 
were inversely correlated with CYP19 mRNA and serum E2 in the 
ovary. These results suggest that Adp inhibited the secretion of 
hormones in the HPO axis in Wannan Spotted gilts.

Conclusion
In this study we have shown that serum reproductive hormones 
and Adp levels changed over time and showed reverse 
developmental changes during prepuberty in Wannan Spotted 

gilts. We propose that Adp may inhibit the hormones of the HPO 
axis through endocrine pathways and this action is mediated by 
AdpR during the prepubertal stages of development. These results 
benefit the further agricultural development and utilization of 
Wannan Spotted gilts.
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