Flyer

International Journal of Drug Development and Research

  • ISSN: 0975-9344
  • Journal h-index: 49
  • Journal CiteScore: 11.20
  • Journal Impact Factor: 8.24
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Genamics JournalSeek
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Scimago
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Publons
  • MIAR
  • University Grants Commission
  • Euro Pub
  • Google Scholar
  • J-Gate
  • SHERPA ROMEO
  • Secret Search Engine Labs
  • ResearchGate
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page

Abstract

A Review: Transdermal Drug Delivery System: A Tool For Novel Drug Delivery System

NIKHIL SHARMA, GETA AGARWAL, A. C. RANA, ZULFIQAR ALI BHAT, DINESH KUMAR

The human skin is a readily accessible surface for drug delivery. Skin of an average adult body covers a surface of approximately 2 m2 and receives about one-third of the blood circulating through the body. Over the past decades, developing controlled drug delivery has become increasingly important in the pharmaceutical industry. The human skin surface is known to contain, on an average, 10- 70 hair follicles and 200-250 sweat ducts on every square centimeters of the skin area. It is one of the most readily accessible organs of the human body. There is considerable interest in the skin as a site of drug application both for local and systemic effect. However, the skin, in particular the stratum corneum, poses a formidable barrier to drug penetration thereby limiting topical and transdermal bioavailability. Skin penetration enhancement techniques have been developed to improve bioavailability and increase the range of drugs for which topical and transdermal delivery is a viable option. During the past decade, the number of drugs formulated in the patches has hardly increased, and there has been little change in the composition of the patch systems. Modifications have been mostly limited to refinements of the materials used. The present review article explores the overall study on transdermal drug delivery system (TDDS) which leads to novel drug delivery system (NDDS).