Archives of Medicine

  • ISSN: 1989-5216
  • Journal h-index: 17
  • Journal CiteScore: 4.25
  • Journal Impact Factor: 3.58
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Genamics JournalSeek
  • China National Knowledge Infrastructure (CNKI)
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Proquest Summons
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
  • Secret Search Engine Labs
Share This Page


Body Mass Index as a Predictor for Diagnosis of Associated Injuries in Femoral Head Fracture Patients: A Retrospective Study

Edem GAP, Zhijun P, Jiaqi W and Jiang L

Purpose: To investigate the relationship between associated injuries (AI) suffered at time of accident in femoral head fracture (FHF) patients with age, sex, location of FHF (right or left leg), height, weight and body mass index (BMI) with using Pipkin classification.

Method: we retrospectively identified patients between January 2003 to September 2017 with FHF in our hospital database. The patients were divided in two groups; with AI and without AI. These two groups where then statistically studied against selected the variables.

Results: 72 patients were eligible with an average followup of 17 months. There were 57 males (79.2%) and 15 females (20.8%). We had 33.8% cases of type I, 28.4% type II, 13.5% type III and 23.3% type IV. We found no association between age, sex, height, weight and location of FHF with the groups with or without AI. The ratio of lighter weight (<57 kg) to heavier weight (>57 kg) patients was 2:3 for AI respectively. Patients with height <167 cm had 72.2% reported cases of AI while 72.3% for those >167 cm. A 50-50% reported cases for with or without AI on left and right leg. However there is a significant association between BMI and the groups with or without AI. Patients with BMI <23 kg/m2 had higher chances of suffering from AI as well as having longer follow-up than their heavier peers (BMI >23 kg/m2).

Conclusion: On the basis of this dataset, the BMI of FHF patient is a critical factor to consider in the diagnosis of associated injuries suffered at time of accident.