Archives in Cancer Research

  • ISSN: 2254-6081
  • Journal h-index: 14
  • Journal CiteScore: 3.77
  • Journal Impact Factor: 4.09
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • OCLC- WorldCat
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
  • J-Gate
  • Secret Search Engine Labs
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page


Comparative Evaluation of Different Docking Tools for Kinases Against Cancerous (Malignant) Cells

Sadia Bano and Aisha Umar

Protein-ligand docking attempts to study and predict the protein-ligand complex which is formed by interaction of receptor with its ligand. Different methods have been used for designing molecular docking algorithms which are initially command based complex procedures and are now user friendly GUI systems. Comparative study of various docking algorithms gives us useful information to select the proper algorithm for our research and design drugs of our choice by using computational techniques. The selection of particular algorithm is important for selected protein dataset. In present study, an important class of Protein, Kinases are considered, which are regulatory in nature, to find appropriate docking tool for their study. Tyrosine Kinases are particularly targeted for making inhibitors which can be used as anticancer drugs. Consequently, specifically suitable docking algorithm for Tyrosine Kinases can be helpful in drug designing against Tyrosine Kinases. This analysis explored four different docking algorithms for docking named as Auto dock, Auto dock Vina, Hex Server and Patch dock. In this study, Auto dock Vina produced suitable ligand conformations.