Translational Biomedicine

  • ISSN: 2172-0479
  • Journal h-index: 18
  • Journal CiteScore: 5.91
  • Journal Impact Factor: 4.11
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • ResearchBible
  • The Global Impact Factor (GIF)
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Scimago
  • Electronic Journals Library
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Proquest Summons
  • Publons
  • MIAR
  • University Grants Commission
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
  • Secret Search Engine Labs
  • ResearchGate
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page


Direct Isolation of Exosomes from Cell Culture: Simplifying Methods for Exosome Enrichment and Analysis

Pedersen KW , Bente Kierulf, Ingrid Manger, Oksvold MP, Mu Li, Alexander VV, Norbert Roos, Anette Kullmann and Axl Neurauter

Exosomes, (50-150 nm sized vesicles), are secreted by all cells and found in all body fluids investigated. Isolation and characterization of exosomes from cell culture systems and body fluids provide valuable information about the biological system. The level of exosomes in human serum will vary depending on many factors such as age, sex, time of sample collection (circadian rhythm/nutrition status) , and of particular interest during diseased conditions. Such information may possibly be used for early detection of disease, monitoring of disease and/or effect of treatment. The established standard for exosome isolation is differential ultracentrifugation a method which cannot discriminate between exosome subpopulations or other particles with similar size and density. Here we have established a direct method for specific isolation of exosomes from cell culture supernatant suitable for a range of different downstream applications. Magnetic beads targeting human CD9 or CD81, common exosomal markers, were used to first isolate and characterize pre-enriched exosomes addressing critical factors (volume, time and exosome concentrations) to establish optimal and comparable isolation conditions. Finally, exosomes were isolated and characterized directly from cell culture media. In conclusion, the data demonstrates the ability to capture exosomes directly providing the possibility to characterize and compare exosomes from different sources and increasing the compatibility in terms of applications.