Flyer

Journal of Neurology and Neuroscience

  • ISSN: 2171-6625
  • Journal h-index: 15
  • Journal CiteScore: 2.13
  • Journal Impact Factor: 1.45
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • The Global Impact Factor (GIF)
  • China National Knowledge Infrastructure (CNKI)
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Proquest Summons
  • Scientific Journal Impact Factor (SJIF)
  • Euro Pub
  • Google Scholar
  • Secret Search Engine Labs
Share This Page

Abstract

Dorsal Root Ganglia Mitochondrial Biochemical Changes in Non-diabetic and Streptozotocin-Induced Diabetic Mice Fed with a Standard or High-Fat Diet

Guilford BL, Ryals JM, E Lezi, Swerdlow RH and Wright DE

Background: Mitochondrial dysfunction is purported as a contributory mechanism underlying diabetic neuropathy, but a defined role for damaged mitochondria in diabetic nerves remains unclear, particularly in standard diabetes models. Experiments here used a high-fat diet in attempt to exacerbate the severity of diabetes and expedite the time-course in which mitochondrial dysfunction may occur. We hypothesized a high-fat diet in addition to diabetes would increase stress on sensory neurons and worsen mitochondrial dysfunction.

Methods: Oxidative phosphorylation proteins and proteins associated with mitochondrial function were quantified in lumbar dorsal root ganglia. Comparisons were made between non-diabetic and streptozotocininduced (STZ) C57Bl/6 mice fed a standard or high-fat diet for 8 weeks.

Results: Complex III subunit Core-2 and voltage dependent anion channel were increased (by 36% and 28% respectively, p<0.05) in diabetic mice compared to nondiabetic mice fed the standard diet. There were no differences among groups in UCP2, PGC-1α, PGC-1β levels or Akt, mTor, or AMPK activation. These data suggest compensatory mitochondrial biogenesis occurs to offset potential mitochondrial dysfunction after 8 weeks of STZinduced diabetes, but a high-fat diet does not alter these parameters.

Conclusion: Our results indicate mitochondrial protein changes early in STZ-induced diabetes. Interestingly, a high-fat diet does not appear to affect mitochondrial proteins in either nondiabetic or STZ- diabetic mice.