Archives of Clinical Microbiology

  • ISSN: 1989-8436
  • Journal h-index: 24
  • Journal CiteScore: 8.01
  • Journal Impact Factor: 7.55
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • The Global Impact Factor (GIF)
  • Open Archive Initiative
  • China National Knowledge Infrastructure (CNKI)
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Proquest Summons
  • Publons
  • MIAR
  • University Grants Commission
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
  • Scimago Journal Ranking
  • Secret Search Engine Labs
  • ResearchGate
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page


Evaluation of Short-Time Method with Tetrazolium Salt and Electron Carrier for Measuring Minimal Inhibitory Concentration of Antimicrobial Agents

Yoshida M, Horino T, Nakazawa Y, Yoshikawa K, Hori S

Background: Minimal inhibitory concentration (MIC) measurements are usually conducted using the agar plate dilution test or the microdilution test. Methods for rapid evaluation of antimicrobial susceptibility using ATP measurements with luciferin-luciferase reagents and a tetrazolium salt have been reported.

Material and methods: We recently measured the minimal inhibitory concentrations (MICs) of various antimicrobial agents against 96 strains of Escherichia coli (1 standard strain and 95 clinically isolated strains) with Cell Counting Kit-8 containing a tetrazolium salt and an electron carrier using the Dry Plate Eiken for MIC measurement and compared the results with that obtained using the standard method.

Results: Agreement exceeded 90% for ampicillin, cefotiam, ceftazidime, flomoxef, aztreonam, imipenem, meropenem, gentamicin, and levofloxacin, and complete agreement exceeded 90% for cefotiam, ceftazidime, flomoxef, aztreonam, imipenem, meropenem, and levofloxacin. Agreement was in the range of 78.1- 86.5% for piperacillin, cefazolin, cefpodoxime, amikacin, and minocycline with complete agreement in the range 55.2-78.1%. Cefaclor had the lowest agreement and complete agreement (42.7% and 38.5, respectively). For the antimicrobial agents with low agreement (piperacillin, cefaclor, cefazolin, amikacin and minocycline), MICs measured by the short-time method were often below onehalf or one-fourth of that measured by the standard method, and regrowth of the bacteria appeared to occur 6 hours after the start of the short-time method.

Conclusion: The results of this study indicate that measuring absorbance with Cell Counting Kit-8 enables counting of viable bacteria. The use of this method for measuring MICs (short-time method) allowed the results of the susceptibility testing to be obtained in 6 hours, and the results correlated well with the results obtained using the standard method. Therefore, this method appears useful for the early detection of drug-resistant bacteria.