Flyer

Molecular Enzymology and Drug Targets

  • Journal h-index: 5
  • Journal CiteScore: 0.46
  • Journal Impact Factor: 0.45
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • China National Knowledge Infrastructure (CNKI)
  • Publons
  • Google Scholar
  • Secret Search Engine Labs
  • Zenodo
Share This Page

Abstract

Modulatinn intestinal uptake of Atenolol

lbrahim A. lsarr

Drug permeation across membranes or targeting to specific tissues. Having a considerable ability to improve the permeability of drugs through lipoid membranes, niosomes have been utilized as carriers to enhance atenolol absorption from the gastrointestinal tract. Two methods have been adopted to prepare niosomes, the proniosome-derived method and the conventional film hydration method. The products from the two methods were compared in terms of their morphology, vesicle size, drug encapsulation efficiency, in vitro drug release and enhancement effect on drug permeation across the intestinal membrane using an averted sac technique. Proniosome-derived niosomes were smoother and exhibited a smaller (5 pm) vesicle size compared to those prepared by conventional methods (1 2 pm). High encapsulation efficiencies of 98.6% and 93.4% were achieved by methods A and B, respectively. In vitro drug release has been significantly retarded from both types of niosomes. Comparing to pure drug, which dissolved completely in 15 min, only 8.9% and 9.9% of the entrapped drug was released in the same time period. However, the difference between the two types of niosomes was not significant.

Keywords

Atenolol; Niosomes; Averted sac; Intestinal absorption; Permeation enhancer

Published Date: 2022-05-30; Received Date: 2022-05-02