Journal of Biomedical Sciences

  • ISSN: 2254-609X
  • Journal h-index: 18
  • Journal CiteScore: 4.95
  • Journal Impact Factor: 4.78
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Genamics JournalSeek
  • China National Knowledge Infrastructure (CNKI)
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Euro Pub
  • Google Scholar
  • J-Gate
  • Secret Search Engine Labs
  • International Committee of Medical Journal Editors (ICMJE)
Share This Page


Morinda lucida Attenuates Acetaminophen-Induced Oxidative Damage and Hepatotoxicity in Rats

Didunyemi MO, Adetuyi BO and Oyebanjo OO

The propanol and aqueous leaves extracts of Morinda lucida were evaluated for their hepatoprotective potential on oxidative stress and acute liver damage induced by acetaminophen (APAP) in rats.

36 male albino rats were divided into 6 groups of 6 rats each; Group I (control) received distilled water, group II; acetaminophen intraperitoneally (i.p.) (250 mg/kg). Group III; 240 mg/kg of PMO only, group IV; APAP+240 mg/kg of PMO, group V; 240 mg/kg of AMO and group VI; APAP+240 mg/kg of AMO for seven days. Groups IV and VI received concomitant treatments. Thereafter, the rats were sacrificed under mild anesthesia, blood samples were collected to estimate serum Alkaline phosphatase (ALP), Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Total bilirubin and Total cholesterol levels. Animal livers were also removed, homogenized and examined for oxidative stress and antioxidant parameters.

Co-treatment of rats with Acetaminophen and M. lucida extracts, significantly ameliorated acetaminophen-induced elevation of serum ALT, AST, ALP, total bilirubin and total cholesterol. And also alleviated the depletion of GSH, GPX, SOD, CAT, NO, MPO and LPO levels in rats.

This study suggests that Morinda lucida leave extracts have protective effects against acetaminophen-induced oxidative damage and acute hepatotoxicity in rats.