Flyer

Journal of FisheriesSciences.com

  • Journal h-index: 32
  • Journal CiteScore: 28.03
  • Journal Impact Factor: 24.27
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Awards Nomination 20+ Million Readerbase
Indexed In
  • Academic Journals Database
  • Genamics JournalSeek
  • The Global Impact Factor (GIF)
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Electronic Journals Library
  • Centre for Agriculture and Biosciences International (CABI)
  • Directory of Research Journal Indexing (DRJI)
  • OCLC- WorldCat
  • Proquest Summons
  • Publons
  • MIAR
  • Advanced Science Index
  • International committee of medical journals editors (ICMJE)
  • Euro Pub
  • Google Scholar
  • J-Gate
  • Chemical Abstract
  • SHERPA ROMEO
  • Secret Search Engine Labs
  • ResearchGate
  • University of Barcelona
Share This Page

Abstract

fishery workers; propensity score-matched; Cox proportional hazard model; cardiometabolic diseases; chronic viral hepatitis

Dr. Faiz Alam*

Nucleic acid, including DNA and RNA, released by organisms can be used to detect their presence in the environment. In a variety of fields, DNA/RNA methods are utilized to identify organisms from ice, water, air, and soil. The headway in innovation prompted simpler location of various organic entities without affecting the climate or the actual creature. These techniques are being used in a variety of fields, including conservation, history, and surveillance. DNA and RNA strategies are widely utilized in hydroponics and fisheries settings to grasp the presence of various fish species and microorganisms in water. In any case, there are a few difficulties related with the unwavering quality of results due to the corruption of nucleic corrosive by a few elements. These techniques have been used to find a number of parasites and diseases in aquaculture. We discuss the fate of these nucleic acids when subjected to various water quality and environmental parameters, as well as the various aquaculture diseases and parasites that were detected using the DNA/RNA approach, in this review. The purpose of this review is to assist the researcher in understanding the potential of DNA/RNA-based pathogen detection in aquaculture; using this, a potential outbreak can be anticipated before it occurs. In addition, the purpose of this paper is to assist readers in comprehending a number of factors that degrade and may impede the detection of these nucleic acids.

Keywords

eDNA; eRNA; Fish disease; Surveillance; Hydrolysis; Degradation; qPCR

Published Date: 2023-04-28; Received Date: 2023-04-03